Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China
XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long
2022, 21 (6): 1539-1550.   DOI: 10.1016/S2095-3119(21)63701-2
Abstract387)      PDF in ScienceDirect      
Milling and appearance quality are important contributors to rice grain quality.  Abundant genetic diversity and a suitable environment are crucial for rice improvement.  In this study, we investigated the milling and appearance quality-related traits in a panel of 200 japonica rice cultivars selected from Liaoning, Jilin and Heilongjiang provinces in Northeast China.  Pedigree assessment and genetic diversity analysis indicated that cultivars from Jilin harbored the highest genetic diversity among the three geographic regions.  An evaluation of grain quality indicated that cultivars from Liaoning showed superior milling quality, whereas cultivars from Heilongjiang tended to exhibit superior appearance quality.  Single- and multi-locus genome-wide association studies (GWAS) were conducted to identify loci associated with milling and appearance quality-related traits.  Ninety-nine significant single-nucleotide polymorphisms (SNPs) were detected.  Three common SNPs were detected using the mixed linear model (MLM), mrMLM, and FASTmrMLM methods.  Linkage disequilibrium decay was estimated and indicated three candidate regions (qBRR-1, qBRR-9 and qDEC-3) for further candidate gene analysis.  More than 300 genes were located in these candidate regions.  Gene Ontology (GO) analysis was performed to discover the potential candidate genes.  Genetic diversity analysis of the candidate regions revealed that qBRR-9 may have been subject to strong selection during breeding.  These results provide information that will be valuable for the improvement of grain quality in rice breeding.
Reference | Related Articles | Metrics
Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid
LIU Jian-long, ZHANG Chen-xiao, LI Tong-tong, LIANG Cheng-lin, YANG Ying-jie, LI Ding-Li, CUI Zhen-hua, WANG Ran, SONG Jian-kun
2022, 21 (5): 1346-1356.   DOI: 10.1016/S2095-3119(21)63786-3
Abstract167)      PDF in ScienceDirect      
Close planting of dwarf varieties is currently the main cultivation direction for pear trees, and the screening of excellent dwarf varieties is an important goal for breeders.  In this study, the dwarfing pear variety ‘601D’ and its vigorous mutant ‘601T’ were used to show their biological characteristics and further explore the dwarfing mechanism in ‘601D’.  The biological characteristics showed that ‘601D’ had a shorter internode length, a shorter and more compact tree body, thicker and broader leaves, lower stomata density, larger stomata size (dimension), and higher photosynthetic capacity.  The biological characteristics of ‘601T’ showed notable contrasts.  The results of endogenous hormone tests indicated that the contents of abscisic acid (ABA), ABA-glucosyl ester, and GA4 were higher in ‘601D’, but the trans-zeatin content was lower.  By transcriptomic analysis, significant differences were found in the biosynthetic and metabolic pathways of ABA.  Related transcription factors such as bHLH, WRKY, and homeobox also participated in the regulation of plant dwarfing.  We therefore examined three hormones with obvious differences with ‘601T’, and found that only ABA could induce ‘601T’ to return to a dwarfing plant phenotype.  Therefore, we conclude that the dwarfing of ‘601D’ is caused by an excessive accumulation of ABA.  This study provides a new theoretical basis for breeding dwarf varieties.
Reference | Related Articles | Metrics
Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows
FAN Cai-yun, SU Di, TIAN He, HU Rui-ting, RAN Lei, YANG Ying, SU Yan-jing, CHENG Jian-bo
2019, 18 (12): 2844-2854.   DOI: 10.1016/S2095-3119(19)62834-0
Abstract138)      PDF in ScienceDirect      
This experiment was conducted to investigate the effects of heat stress (HS) on the feed intake, milk production and composition and metabolic alterations in the mammary gland of dairy cows.  Twenty Holstein cows were randomly assigned to one of two treatments according to a completely randomized design.  Half of the cows were allocated to the HS group in August (summer season), and the other half were assigned to the HS-free group in November (autumn season).  HS reduced (P<0.01) dry matter intake (DMI), milk yield, milk protein and milk urea nitrogen (MUN) of cows compared with HS-free control, but increased (P<0.01) milk somatic cell counts (SCC).  We determined the HS-induced metabolic alterations and the relevant mechanisms in dairy cows using liquid chromatography mass spectrometry combined with multivariate analyses.  Thirty-four metabolites were identified as potential biomarkers for the diagnosis of HS in dairy cows.  Ten of these metabolites, glucose, lactate, pyruvate, lactose, β-hydroxybutyrate, citric acid, α-ketoglutarate, urea, creatine, and orotic acid, had high sensitivity and specificity for HS diagnoses, and seven metabolites were also identified as potential biomarkers of HS in plasma, milk, and liver.  These substances are involved in glycolysis, lactose, ketone, tricarboxylic acid (TCA), amino acid and nucleotide metabolism, indicating that HS mainly affects lactose, energy and nucleotide metabolism in the mammary gland of lactating dairy cows.  This study suggested that HS might affect milk production and composition by affecting the feed intake and substance metabolisms in the mammary gland tissue of lactating dairy cows.
Reference | Related Articles | Metrics