Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Ensiling vine tea (Ampelopsis grossedentata) residue with Lactobacillus plantarum inoculant as an animal unconventional fodder
WANG Yuan, ZHOU Hong-zhang, GAO Yu, WANG Ning-wei, LIU Han, YANG Fu-yu, NI Kui-kui
2023, 22 (4): 1172-1183.   DOI: 10.1016/j.jia.2022.10.001
Abstract221)      PDF in ScienceDirect      

The study aimed to evaluate the application of silage fermentation in storing vine tea residue.  Dynamic of fermentation-related product, chemical component and bacterial community of silage with or without Lactobacillus plantarum F1 inoculant were analyzed.  The results showed that F1 treatment had a significant (P<0.05) impact on the lactic acid and ammoniacal nitrogen concentrations and pH value.  Total phenols were well preserved in both treatments.  After 30 days of ensiling, Lplantarum occupied the majority of Lactobacillus genus (more than 95%) in all silage samples.  Spearman revealed a positive (P<0.01) correlation between lactic acid content and Lactobacillus.  Overall, ensiling vine tea residue with Lplantarum can effectively preserve the nutritional attributes and total phenols, which offers a new insight into utilizing vine tea residue.

Reference | Related Articles | Metrics
Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality
LI Dong-xia, NI Kui-kui, ZHANG Ying-chao, LIN Yan-li, YANG Fu-yu
2018, 17 (12): 2768-2782.   DOI: 10.1016/S2095-3119(18)62060-X
Abstract290)      PDF in ScienceDirect      
This study assessed the effects of lactic acid bacteria (LAB), cellulase, cellulase-producing Bacillus pumilus and their combinations on the fermentation characteristics, chemical composition, bacterial community and in vitro digestibility of alfalfa silage.  A completely randomized design involving a 8 (silage additives)×3 or 2 (silage days) factorial arrangement of treatments was adopted in the present study.  The 8 silage additive treatments were: untreated alfalfa (control); two commercial additives (GFJ and Chikuso-1); an originally selected LAB (Lactobacillus plantarum a214) isolated from alfalfa silage; a cellulase-producing Bacillus (CB) isolated from fresh alfalfa; cellulase (C); and the combined additives (a214+C and a214+CB).  Silage fermentation characteristics, chemical composition and microorganism populations were analysed after 30, 60 and 65 days (60 days followed by exposure to air for five additional days).  In vitro digestibility was analysed for 30 and 60 days.  Compared with the other treatments, selected LAB a214, a214 combined with either C or CB, and Chikuso-1 had the decreased (P<0.001) pH and increased (P<0.001) lactic acid concentrations during the ensiling process, and there were no differences (P>0.05) among them.  Fiber degradation was not significant (P≥0.054) in any C or CB treatments.  The a214 treatment showed the highest (P=0.009) in vitro digestibility of dry matter (595.0 g kg–1 DM) after ensiling and the highest abundance of Lactobacillus (69.42 and 79.81%, respectively) on days 60 and 65, compared to all of other treatments.  Overall, the silage quality of alfalfa was improved with the addition of a214, which indicates its potential as an alfalfa silage inoculant.
Reference | Related Articles | Metrics