Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Flight activity promotes reproductive processes in the fall armyworm, Spodoptera frugiperda
GE Shi-shuai, HE Wei, HE Li-mei, YAN Ran, ZHANG Hao-wen, WU Kong-ming
2021, 20 (3): 727-735.   DOI: 10.1016/S2095-3119(20)63204-X
Abstract148)      PDF in ScienceDirect      
The fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), has invaded many countries in Africa and Asia since 2016, posing a major threat to world food security.  Long-distance migration and strong reproductive ability form the biological basis of its rapid population expansion, but the relationship between the flight and reproduction of FAW has not been studied in depth.  Here, an empirical assessment of this relationship in an invasive FAW population in China found that 1–3-day-old adults which had undergone 10-h tethered flights had a significantly shorter pre-oviposition period and greater oviposition synchronization, but did not show any differences in fecundity, oviposition period, mating percentage or other reproductive variables.  Further studies on moths after 1.25–15-h tethered flights indicated that the reproductive process of adults could be fully triggered by flight activity longer than 2.5 h.  Dissection of the reproductive organs also showed that tethered flight promoted ovarian and testicular development of FAW.  These results show that appropriate moth flight activity significantly speeds up the reproductive process of FAW, which increases our knowledge on its migratory biology in relation to regional outbreaks.
 
Reference | Related Articles | Metrics
Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda
GE Shi-shuai, HE Li-mei, HE Wei, YAN Ran, Kris A. G. WYCKHUYS, WU Kong-ming
2021, 20 (3): 707-714.   DOI: 10.1016/S2095-3119(20)63166-5
Abstract117)      PDF in ScienceDirect      
In late 2018, the fall armyworm (FAW) Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) made its arrival in China and its populations have since proliferated across most of eastern Asia.  While S. frugiperda exhibits a considerable dispersal capacity and engages in long-distance migration, there’s only scant information on the species’ flight capability.  Here, we empirically assessed S. frugiperda flight activity under varying climatic conditions using a flight mill.  More specifically, under laboratory conditions, FAW exhibited superior flight performance at 20–25°C and 60–90% relative humidity (RH).  When quantifying flight performance over five consecutive nights (i.e., 10 h/night), all flight parameters initially increased and then gradually dropped and FAW adults attained a total flight distance, duration and velocity equal to 63.73 km (48.42–94.12 km) (median, quartile range), 24.12 h (20.87–27.73 h) and 2.73 km h–1 (2.13–3.33 km h–1), respectively.  Our work constitutes a first comprehensive assessment of S. frugiperda flight performance and provides baseline information for future efforts to forecast spatiotemporal changes in its geographical distribution, movement patterns and invasion trajectories.  Such can ultimately permit a timely and targeted deployment of area-wide pest management measures against this newly-invasive pest in China and across eastern Asia. 
Reference | Related Articles | Metrics