Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress
Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li
2024, 23 (12): 4074-4092.   DOI: 10.1016/j.jia.2024.07.013
Abstract174)      PDF in ScienceDirect      
Salt stress is a typical abiotic stress in plants that causes slow growth, stunting, and reduced yield and fruit quality.  Fertilization is necessary to ensure proper crop growth.  However, the effect of fertilization on salt tolerance in grapevine is unclear.  In this study, we investigated the effect of nitrogen fertilizer (0.01 and 0.1 mol L–1 NH4NO3) application on the salt (200 mmol L–1 NaCl) tolerance of grapevine based on physiological indices, and transcriptomic and metabolomic analyses.  The results revealed that 0.01 mol L–1 NH4NO3 supplementation significantly reduced the accumulation of superoxide anion (O2·), enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD), and improved the levels of ascorbic acid (AsA) and glutathione (GSH) in grape leaves compared to salt treatment alone.  Specifically, joint transcriptome and metabolome analyses showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were significantly enriched in the flavonoid biosynthesis pathway (ko00941) and the flavone and flavonol biosynthesis pathway (ko00944).  In particular, the relative content of quercetin (C00389) was markedly regulated by salt and nitrogen.  Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities, increased the AsA and GSH contents, and reduced the H2O2 and O2· contents.  Meanwhile, 10 hub DEGs, which had high Pearson correlations (R2>0.9) with quercetin, were repressed by nitrogen.  In conclusion, all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response, thus providing a new perspective for improving salt tolerance in grapes.


Reference | Related Articles | Metrics
A multiplex real-time PCR assay for simultaneous detection of classical swine fever virus, African swine fever virus and atypical porcine pestivirus
SONG Xiang-peng, XIA Ying-ju, XU Lu, ZHAO Jun-jie, WANG Zhen, ZHAO Qi-zu, LIU Ye-bing, ZHANG Qian-yi, WANG Qin
2023, 22 (2): 559-567.   DOI: 10.1016/j.jia.2022.08.115
Abstract211)      PDF in ScienceDirect      

With the implementation of the C-strain vaccine, classical swine fever (CSF) has been under control in China, which is currently in a chronic atypical epidemic situation.  African swine fever (ASF) emerged in China in 2018 and spread quickly across the country. It is presently occurring sporadically due to the lack of commercial vaccines and farmers’ increased awareness of biosafety.  Atypical porcine pestivirus (APPV) was first detected in Guangdong Province, China, in 2016, which mainly harms piglets and has a local epidemic situation in southern China.  These three diseases have similar clinical symptoms in pig herds, which cause considerable losses to the pig industry.  They are difficult to be distinguished only by clinical diagnosis.  Therefore, developing an early and accurate simultaneous detection and differential diagnosis of the diseases induced by these viruses is essential.  In this study, three pairs of specific primers and Taq-man probes were designed from highly conserved genomic regions of CSFV (5´ UTR), African swine fever virus (ASFV) (B646L), and APPV (5´ UTR), followed by the optimization of reaction conditions to establish a multiplex real-time PCR detection assay.  The results showed that the method did not cross-react with other swine pathogens (porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), foot-and-mouth disease virus (FMDV), pseudorabies virus (PRV), porcine parvovirus (PPV), and bovine viral diarrhea virus BVDV).  The sensitivity results showed that CSFV, ASFV, and APPV could be detected as low as 1 copy mL–1; the repeatability results showed that the intra-assay and inter-assay coefficient of variation of ASFV, CSFV, and APPV was less than 1%.  Twenty-two virus samples were detected by the multiplex real-time PCR, compared with national standard diagnostic and patented method assay for CSF (GB/T 27540–2011), ASF (GB/T 18648–2020), and APPV (CN108611442A), respectively.  The sensitivity of this triple real-time PCR for CSFV, ASFV, and APPV was almost the same, and the  compliance results were the same (100%).  A total of 451 clinical samples were detected, and the results showed that the positive rates of CSFV, ASFV, and APPV were 0.22% (1/451), 1.3% (6/451), and 0% (0/451), respectively.  This assay provides a valuale tool for rapid detection and accurate diagnosis of CSFV, ASFV, and APPV.

Reference | Related Articles | Metrics
The effect of amylose on kernel phenotypic characteristics, starch-related gene expression and amylose inheritance in naturally mutated high-amylose maize
ZHANG Xu-dong, GAO Xue-chun, LI Zhi-wei, XU Lu-chun, LI Yi-bo, ZHANG Ren-he, XUE Ji-quan, GUO Dong-wei
2020, 19 (6): 1554-1564.   DOI: 10.1016/S2095-3119(19)62779-6
Abstract122)      PDF in ScienceDirect      
High-amylose maize starch has great potential for widespread industrial use due to its ability to form strong gels and film and in the food processing field, thus serving as a resistant starch source.  However, there is still a substantial shortage of high-amylose maize due to the limitation of natural germplasm resources, although the well-known amylose extender (ae) gene mutants have been found to produce high-amylose maize lines since 1948.  In this context, high-amylose maize lines (13 inbreds and 18 hybrids) originating from a natural amylose mutant in our testing field were utilized to study the correlation between amylose content (AC) and phenotypic traits (kernel morphology and endosperm glossiness), grain filling characteristics, gene expression, and amylose inheritance.  Our results showed that AC was negatively correlated with total starch content but was not correlated with grain phenotypes, such as kernel fullness, kernel morphology and endosperm glossiness.  Maize lines with higher amylose had a greater grain filling rate than that of the control (B73) during the first 20 days after pollination (DAP).  Both starch debranching enzyme (DBE) groups and starch branching enzyme IIb (SBEIIb) groups showed a greater abundance in the control (B73) than in the high-amylose maize lines.  Male parents directly predicted AC of F1, which was moderately positively correlated with the F2 generation.
 
Reference | Related Articles | Metrics
Influence of PPV, PRV and PRRSV on Efficacy of the Lapinized Hog Cholera Vaccine and Pathogenicity of Classical swine fever virus
NING Yi-bao, ZHAO Yun, WANG Qin, FAN Xue-zheng, QIN Yu-ming, ZHANG Guang-chuan, XU Lu, QIU Hui-shen, WANG Zai-shi, SONG Li, SHEN Qing-chun, ZHAO Qi-zu
2012, 12 (11): 1892-1897.   DOI: 10.1016/S1671-2927(00)8725
Abstract1415)      PDF in ScienceDirect      
Classical swine fever caused by Classical swine fever virus (CSFV) is a serious problem for swine industries in developing countries, which successful control of the disease have been relying on vaccination. However, classical swine fever still occurs in some immunized swine herds for various reasons. In this study, we conducted animal experiments to examine the influence of single or mixed infection with Porcine parvo virus (PPV), Pseudorabies virus (PRV) and Porcine reproductive and respiratory syndrome virus (PRRSV) on the protective immunity induced by the Lapinized hog cholera virus (HCLV) vaccine and the pathogenicity of CSFV. In experiment 1, pigs were first inoculated with PPV, PRV or PRRSV, then immunized with HCLV, and finally challenged with a highly virulent CSFV Shimen strain. All of the pigs immunized with HCLV survived after the challenge, while all of the pigs in the non-immunized control group died after the challenge. The pigs in the group immunized with HCLV did not show any clinical symptoms of classical swine fever and were negative with CSFV after the challenge. The pigs infected with the non-CSFV before HCLV immunization did not display any clinical symptoms after the challenge with CSFV Shiman strain, but 11 of the 12 pigs were positive with CSFV. In experiment 2, pre-infections with PPV, PRV, and PRRSV were followed by inoculation with a low-virulence CSFV strain (CSFV 39), and then the pigs were challenged with the CSFV Shimen strain. Infections by either PPV, PRV or PRRSV did not enhance the virulence of CSFV-39, but pigs infected by a mixture of the 3 viruses developed clinical symptoms after inoculation with CSFV-39. The mixed infection also increased mortality caused by the challenge with the CSFV Shimen strain. Together, these results showed PPV, PRV and PRRSV infections in pigs can reduce the efficacy of the HCLV vaccine and enhance the pathogenicity of CSFV, which may partly explain the immunization failure against CSFV in some swine herds.
Reference | Related Articles | Metrics