Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Evidence of silk growth hampering in maize at high planting density using phenotypic and transcriptional analysis
ZHANG Min, XING Li-juan, REN Xiao-tian, ZOU Jun-jie, SONG Fu-peng, WANG Lei, XU Miao-yun
2022, 21 (11): 3148-3157.   DOI: 10.1016/j.jia.2022.08.083
Abstract350)      PDF in ScienceDirect      
Increasing the planting density is an effective way to increase the yield of maize (Zea mays L.), although it can also aggravate ovary apical abortion-induced bald tips of the ears, which might, in turn, reduce the yield.  While the mechanism underlying the regulation of drought-related abortion in maize is well established, high planting density-related abortion in maize remains poorly understood.  Therefore, the present study was designed to investigate the mechanism underlying the ovary apical abortion response to high density.  This was achieved by evaluating the effects of four different plant densities (60 000 plants ha–1 (60 k), 90 k, 120 k, and 150 k) on plant traits related to plant architecture, the plant ear, flowering time, and silk development in two inbred lines (Zheng58 and PH4CV) and two hybrid lines (Zhengdan958 and Xianyu335).  The phenotypes of both inbred and hybrid plants were observed under different planting density treatments, and the high planting density was found to increase the phenotypic performance values of the evaluated traits.  The anthesis–silking interval (ASI) was extended, and the amount of the silk extruded from husks was reduced upon increasing the planting density.  Delayed silk emergence resulted in asynchronous flowering and ear bald tips.  Observations of the silk cells revealed that the silk cells became smaller as planting density increased.  The changes in transcript abundances in the silks involved the genes associated with expansive growth rather than carbon metabolism.  These findings further our understanding of silk growth regulation under high planting density and provide a theoretical basis for further research on improving high planting density breeding in maize.  
Reference | Related Articles | Metrics
Differentially expressed miRNAs in anthers may contribute to the fertility of a novel Brassica napus genic male sterile line CN12A
Dong Yun, Wang Yi, Jin Feng-wei, Xing Li-juan, Fang Yan, Zhang Zheng-ying, ZOU Jun-jie, Wang Lei, Xu Miao-yun
2020, 19 (7): 1731-1742.   DOI: 10.1016/S2095-3119(19)62780-2
Abstract95)      PDF in ScienceDirect      
In Brassica napus L. (rapeseed), complete genic male sterility (GMS) plays an important role in the utilization of heterosis.  Although microRNAs (miRNAs) play essential regulatory roles during bud development, knowledge of how GMS is regulated by miRNAs in rapeseed is rather limited.  In this study, we obtained a novel recessive GMS system, CN12AB.  The sterile line CN12A has defects in tapetal differentiation and degradation.  Illumina sequencing was employed to examine the expression of miRNAs in the buds of CN12A and the fertile line CN12B.  We identified 85 known miRNAs and 120 novel miRNAs that were expressed during rapeseed anther development.  When comparing the expression levels of miRNAs between CN12A and CN12B, 19 and 18 known miRNAs were found to be differentially expressed in 0.5–1.0 mm buds and in 2.5–3.0 mm buds, respectively.  Among these, the expression levels of 14 miRNAs were higher and the levels of 23 miRNAs were lower in CN12A compared with CN12B.  The predicted target genes of these differentially expressed miRNAs encode protein kinases, F-box domain-containing proteins, MADS-box family proteins, SBP-box gene family members, HD-ZIP proteins, floral homeotic protein APETALA 2 (AP2), and nuclear factor Y, subunit A.  These targets have previously been reported to be involved in pollen development and male sterility, suggesting that miRNAs might act as regulators of GMS in rapeseed anthers.  Furthermore, RT-qPCR data suggest that one of the differentially expressed miRNAs, bna-miR159, plays a role in tapetal differentiation by regulating the expression of transcription factor BnMYB101 and participates in tapetal degradation and influences callose degradation by manipulating the expression of BnA6.  These findings contribute to our understanding of the roles of miRNAs during anther development and the occurrence of GMS in rapeseed.
 
Reference | Related Articles | Metrics