Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Changes in soil organic carbon pools following long-term fertilization under a rain-fed cropping system in the Loess Plateau, China
WANG Ren-jie, SONG Jia-shan, FENG Yong-tao, ZHOU Jiang-xiang, XIE Jun-yu, Asif KHAN, CHE Zong-xian, ZHANG Shu-lan, YANG Xue-yun
2021, 20 (9): 2512-2525.   DOI: 10.1016/S2095-3119(20)63482-7
Abstract177)      PDF in ScienceDirect      
Understanding the mechanism of soil organic carbon (SOC) sequestration is of paramount importance in sustaining crop productivity and mitigating climate change.  Long-term trials were employed to investigate the responses of total SOC and its pools, i.e., mineral-associated OC (MOC), particulate OC (POC, containing Light-POC and Heavy-POC), to fertilization regimes at Yangling (25-year), Tianshui (35-year) and Pingliang (37-year) under a rain-fed cropping system in the Loess Plateau.  The fertilization regimes in each trial included three treatments, i.e., control (no nutrient input, CK), chemical fertilizers (CF), and organic manure plus chemical fertilizers (MCF).  Relative to the CK, long-term fertilization appreciably increased SOC storage by 134, 89 and 129 kg ha–1 yr–1 under CF, and 418, 153 and 384 kg ha–1 yr–1 under MCF in plough layer soils (0–20 cm), respectively, at the Yangling, Tianshui and Pingliang sites.  The MOC pools accounted for 72, 67 and 64% of the total SOC at the above three sites with sequestration rates of 76, 57 and 83 kg ha–1 yr–1 under CF and 238, 118 and 156 kg ha–1 yr–1 under MCF, respectively.  Moreover, the MOC pool displayed a saturation behavior under MCF conditions.  The POC accordingly constituted 27, 33 and 36% of SOC, of which Light-POC accounted for 11, 17 and 22% and Heavy-POC for 17, 16 and 15% of SOC, respectively.  The sequestration rates of POC were 58, 32 and 46 kg ha–1 yr–1 under CF, and 181, 90 and 228 kg ha–1 yr–1 under MCF at the three respective sites, in which Light-POC explained 59, 81 and 72% of POC under CF, and 60, 40 and 69% of POC under MCF, with Heavy-POC accounting for the balance.  Compared with CK, the application of CF alone did not affect the proportions of MOC or total POC to SOC, whereas MCF application markedly reduced the proportion of MOC and increased the POC ratio, mainly in the Light-POC pool.  The distribution of SOC among different pools was closely related to the distribution and stability of aggregates.  The present study confirmed that organic manure amendment not only sequestered more SOC but also significantly altered the composition of SOC, thus improving SOC quality, which is possibly related to the SOC saturation level.
 
Reference | Related Articles | Metrics
Organic matter fractions within macroaggregates in response to long-term fertilization in calcareous soil after reclamation
CAO Han-bing, XIE Jun-yu, HONG Jie, WANG Xiang, HU Wei, HONG Jian-ping
2021, 20 (6): 1636-1648.   DOI: 10.1016/S2095-3119(20)63354-8
Abstract98)      PDF in ScienceDirect      
Soil organic carbon (SOC) plays a key role in improving soil quality and optimizing crop yield.  Yet little is known about the fate of macroaggregates (>0.25 mm) under long-term fertilization and their relative importance in SOC sequestration in reclaimed calcareous soil.  Therefore, the effects of mineral fertilizers and organic manure on the mechanisms of organic carbon (OC) stabilization in macroaggregates were investigated in this study.  Four treatments were used: unfertilized control (CK), mineral fertilizer (NPK), compost chicken manure alone (M), and mineral fertilizers plus manure (MNPK).  Samples from the 0–20 cm layer of soil receiving 11-year-long fertilization were separated into four fractions based on the macroaggregates present (unprotected coarse and fine particulate organic matter, cPOM and fPOM; physically protected intra-microaggregate POM, iPOM; and biochemically protected mineral associated OM, MOM) by the physical fractionation method.  Compared with the control, the long-term application of NPK had little effect on SOC content, total nitrogen (TN) content, and OC and TN contents of macroaggregate fractions.  In contrast, incorporation of organic manure (MNPK) significantly increased SOC (45.7%) and TN (24.3%) contents.  Application of MNPK increased OC contents within macroaggregate-extracted fractions of cPOM (292.2%), fPOM (136.0%) and iPOM (124.0%), and TN contents within cPOM (607.1%), fPOM (242.5%) and iPOM (127.6%), but not the mineral associated organic carbon (MOM-C) and nitrogen (MOM-N) contents.  Unprotected C fractions were more strongly and positively correlated with SOC increase than protected C fractions, especially for cPOM-C, indicating that SOC sequestration mainly occurred via cPOM-C in the studied calcareous soil.  In conclusion, MNPK increased the quantity and stability of SOC by increasing the contents of cPOM-C and cPOM-N, suggesting that this management practice (MNPK) is an effective strategy to develop sustainable agriculture.
Reference | Related Articles | Metrics
Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil
XIE Jun-yu, XU Ming-gang, Qiangjiu Ciren, YANG Yang, ZHANG Shu-lan, SUN Ben-hua, YANG Xue-yun
2015, 14 (12): 2405-2416.   DOI: 10.1016/S2095-3119(15)61205-9
Abstract1336)      PDF in ScienceDirect      
This study investigated the effects of three contrasting soil management regimes and different nutrient treatments on the distribution of water-stable aggregates (>2, 1–2, 0.5–1, 0.25–0.5, and <0.25 mm) and associated soil organic carbon (SOC) and total nitrogen (TN) content in loess soil. A 21-yr long-term experiment was performed, in which soil management regimes include cropland abandonment (Abandonment), bare fallow (Fallow) and wheat-fallow cropping (Cropping). Under Cropping, the following nutrient treatments were employed: control (CK, no nutrient input), nitrogen only (N), nitrogen and potassium (NK), phosphorus and potassium (PK), NP, NPK, and manure (M) plus NPK (MNPK). Results demonstrated that Abandonment significantly increased the content of soil macro-aggregates (>0.25 mm) and mean weight diameter (MWD) at 0–10 and 10–20 cm soil horizons compared with Cropping, whereas Fallow yielded lower values of above two parameters. Abandonment increased SOC and TN contents in all aggregate sizes by 17–62% and 6–60%, respectively, at 0–10 cm soil layer compared with Cropping. Conversely, Fallow decreased SOC and TN contents in all aggregates by 7–27% and 7–25%, respectively. Nevertheless, the three soil management regimes presented similar SOC contents in all aggregates at 10–20 cm soil horizon. Only Cropping showed higher TN content in >0.5 mm aggregates than the two other regimes. Consequently, Abandonment enhanced the partitioning proportions of SOC and TN in >1 mm macro-aggregates, and Fallow promoted these proportions in micro-aggregates compared with Cropping. Under Cropping, long-term fertilization did not affect the distribution of aggregates and MWD values compared with those under CK, except for NPK treatment. Fertilizer treatments enhanced SOC and TN contents in aggregates at all tested soil depths. However, fertilization did not affect the partitioning proportions of SOC and TN contents in all aggregates compared with CK. Comprehensive results showed that different soil management regimes generated varied patterns of SOC and TN sequestration in loess soil. Abandonment enhanced soil aggregation and sequestered high amounts of SOC and TN in macro-aggregates. Long-term amendment of organic manure integrated with NPK maintained soil aggregate stability and improved SOC and TN sequestration in all aggregates in loess soil subjected to dryland farming.
Reference | Related Articles | Metrics