Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Dopamine improves apple replant disease resistance by regulating physiological resilience and rhizosphere microbial community structure
Peihua Du, Yang Cao, Huaite Liu, Jiahao Ji, Wei Sun, Xueying Zhang, Jizhong Xu, Bowen Liang
2024, 23 (9): 3025-3044.   DOI: 10.1016/j.jia.2024.07.011
Abstract87)      PDF in ScienceDirect      
Apple replant disease (ARD) is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species (ROS) levels and limited nutrient utilization in plants.  However, existing countermeasures cannot effectively address this challenge.  Here, we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.  Exogenous application of 100 μmol L–1 dopamine significantly promoted the growth of apple seedlings in the replanted soil, with a relative growth rate increase of 17.44%.  Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.  First, dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen (N) transport and metabolism.  Among those genes, MdNLP5, MdNRT1.1, MdNLP2, MdNRT2.5, MdNLP3, MdNRT2.4, MdNADH-GAGOT, and MdFd-GAGOT were strongly regulated by dopamine.  These regulatory effects promoted the uptake and utilization of soil N by the plants.  Second, dopamine improved the physical and chemical properties, enhanced microbial community diversity, and promoted mutual cooperation between microbial communities in the soil.  Furthermore, dopamine altered the microbial structure of rhizosphere soil (upregulating Clostridiales, Gaiellales, Sordariales and Mortierellales; downregulating Micrococcales, Longimicrobiales, Hypocreales and Cystobasidiales).  Notably, dopamine significantly upregulated the abundances of Gaiella and Mortierella, both of which were positively correlated with soil urease activity, soil available N content, plant growth and N uptake.  Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella (by 11.71-fold) in replant soil.  Our results provide insights into the mechanisms by which dopamine promotes ARD resistance, and can promote the sustainable development of the apple industry.


Reference | Related Articles | Metrics

Impacts of agri-food e-commerce on traditional wholesale industry: Evidence from China

Ruyi Yang, Jifang Liu, Shanshan Cao, Wei Sun, Fantao Kong
2024, 23 (4): 1409-1428.   DOI: 10.1016/j.jia.2023.10.020
Abstract173)      PDF in ScienceDirect      

Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.  However, the interaction between agri-food e-commerce (AEC) and the traditional agri-food wholesale industry (AWI) has not received enough attention in the existing literature.  Based on the provincial panel data from 2013 to 2020 in China, this paper examines the effect of AEC on AWI, comprising three dimensions: digitalization (DIGITAL), agri-food e-commerce infrastructure and supporting services (AECI), and agri-food e-commerce economy (AECE).  First, AWI and AEC are measured using an entropy-based combination of indicators.  The results indicate that for China as a whole, AWI has remained practically unchanged, whereas AEC exhibits a significant rising trend.  Second, the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI, whereas AECI negatively affects AWI.  Third, threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity, which manifests as a first increase and then a drop in the inhibition degree.  These results suggest that with the introduction of e-commerce for agricultural product circulation, digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.  Furthermore, the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.

Reference | Related Articles | Metrics

miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27

Shengjie Shi, Lutong Zhang, Liguang Wang, Huan Yuan, Haowei Sun, Mielie Madaniyati, Chuanjiang Cai, Weijun Pang, Lei Gao, Guiyan Chu
2024, 23 (4): 1315-1328.   DOI: 10.1016/j.jia.2023.04.008
Abstract164)      PDF in ScienceDirect      

Ovarian follicle development is associated with the physiological functions of granulosa cells (GCs), including proliferation and apoptosis.  The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.  However, the functions of miR-24-3p on GCs are unclear.  In this study, using flow cytometry, 5-ethynyl-2´-de-oxyuridine (EdU) staining, and cell count, we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes, moreover, miR-24-3p inhibited GC apoptosis.  Mechanistically, on-line prediction, bioinformatics analysis, a luciferase reporter assay, RT-qPCR, and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B (P27/CDKN1B).  Furthermore, the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.  These findings suggest that miR-24-3p regulates the physiological functions of GCs.

Reference | Related Articles | Metrics
Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice
Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang
DOI: 10.1016/j.jia.2024.02.010 Online: 12 March 2024
Abstract19)      PDF in ScienceDirect      
Aligning leaf nitrogen (N) distribution to match the light gradient is crucial for maximizing canopy dry matter production (DMP) and improving N utilization efficiency.  However, the relationship between the gradient of root-derived cytokinins and N distribution in rice leaves, along with its impact on DMP and the underlying mechanisms, remains poorly understood.  A two-year field experiment was conducted using two japonica N-efficient varieties (NEVs) and two japonica N-inefficient varieties (NIVs) under four different N rates (0, 90, 180 and 360 kg N ha1). These selected varieties exhibited similar values in the coefficient of light extinction (KL).  Results showed that, at lower N rates (0-180 kg N ha−1), the NEVs exhibited greater dry matter weight at maturity, higher grain yield and improved internal N use efficiency (IEN), compared to the NIVs, despite possessing comparable total N uptake.  Compared with the NIVs, the NEVs exhibited a more pronounced nitrogen distribution gradient in leaves, as indicated by the coefficient of nitrogen extinction (KN) values during the middle and early grain filling stages.  This enhanced gradient led to improved coordination between light and nitrogen, resulting in greater photosynthetic production, particularly at lower N rates. Furthermore, the NEVs demonstrated a larger gradient of zeatin (Z)+zeatin riboside (ZR) in leaves (i.e., higher ratios of Z+ZR levels between upper and lower leaves), enhanced expression levels of genes related to N export in lower leaves and Z+ZR loading in root, respectively, elevated enzymes activities related to N assimilation in upper leaves, in relative to the NIVs.  Correlation and random forest analyses demonstrated a strong positive correlation between Z+ZR gradient, KN, and DMP, and the gradient facilitated the export of N from lower leaves and its assimilation in upper leaves, contributing significantly to both KN and DMP.  This process was closely linked to root activity, including root oxidation activity, root Z+ZR content, and Z+ZR loading capacity, as confirmed by applying an inhibitor or a promoter of cytokinins biosynthesis to roots.  Interestingly, at the N rate of 360 kg N ha−1, both NEVs and NIVs showed indistinguishable plant traits, achieving a super high-yielding level (over 10.5 t ha−1) but with remarkably low IEN.  The results suggest that increasing Z+ZR gradient can improve KN and DMP, where it needs to maintain higher root activity, thus leading to high yield and high IEN.  Further research is needed to explore and develop cultivation practices with reduced N to unlock the super high-yielding potential of the NEVs.
Reference | Related Articles | Metrics
Transcriptome-metabolome and anatomy conjoint analysis of vital component change of photosynthesis of Foxtail millet under different drought conditions
Jing Wang, Zexin Sun, Lei Tian, Wei Sun, Xinning Wang, Zhihao Wang, Zhiying Wang, Zhao Li, Wei Liu, Qianchi Ma, Chuanyou Ren, Xinning Gao, Yue Li, Liwei Wang, Xiaoguang Wang, Chunji Jiang, Chao Zhong, Xinhua Zhao, Haiqiu Yu
DOI: 10.1016/j.jia.2024.04.001 Online: 28 April 2024
Abstract39)      PDF in ScienceDirect      
Drought caused by extreme climate change has become more severe and unpredictable, causing imperceptible effects on leaf photosynthesis in foxtail millet.  To investigate the damage, we performed light drought (LD) and heavy drought (HD) treatments at both the elongation (Y) and booting stages to obtain a comprehensive understanding of the morphological, anatomical, physiological, transcriptome, and metabolome levels.  Under drought stress, the length and area of leaves decreased, especially during the HD treatment at the booting stage.  The number of mesophyll cells and the area of large vascular bundles were both decreased under LD and HD treatments at the booting stage, as well as with more blurring vascular bundle structure and Kranz anatomy.  However, these numbers decreased but with no significance under Y-LD and Y-HD treatments at the elongation stage.  The net photosynthetic rate, stomatal conductivity, transpiration rate, and intercellular CO2 concentration significantly decreased at the booting stage.  In addition, the efficiency of electron transfers in photosystem II (PS II) decreased.  Conjunction analyses of the transcriptome and metabolome were utilized to uncover the underlying mechanism at the booting stage.  The results showed that there was no common differentially enriched pathway in the transcriptome and metabolome under LD treatment but thirty-two pathways were enriched in both the transcript and metabolome under HD treatment.  Among these, three pathways arginine, proline metabolism, tyrosine metabolism, ubiquinone, and other terpenoid-quinone biosynthesis pathways were differentially enriched in both the transcript and metabolome.  The accumulation of Homogentisate, Salidroside, Homoprotocatechuate, L-DOPA, Tyramine, and L-Tyrosine increased under drought stress.  Although genes related to PSII and the Calvin cycle were slightly up-regulated under LD conditions, they were down-regulated under HD condition.  The metabolites of Ribose-5P, Glycerate-3P, D-Fructosel 1,6P2, and D-Fructose-6P were all decreased in both the LD and HD treatments, especially D-Fructose-6P, confirming that drought stress had a negative effect on the Calvin cycle.  The results revealed that regardless of the severity of drought, photosynthetic function was compromised not only at the morphological and anatomical levels but also in terms of impaired ATP synthase and inhibited photosynthetic CO2 assimilation.
Reference | Related Articles | Metrics