导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((WU You[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Relationships between temperature-light meteorological factors and seedcotton biomass per boll at different boll positions
WU You, ZHAO Wen-qing, MENG Ya-li, WANG You-hua, CHEN Bing-lin, ZHOU Zhi-guo
2018, 17 (
06
): 1315-1326. DOI:
10.1016/S2095-3119(17)61820-3
Abstract
(
452
)
PDF in ScienceDirect
Cotton growth and development are determined and influenced by cultivars, meteorological conditions, and management practices. The objective of this study was to quantify the optimum of temperature-light meteorological factors for seedcotton biomass per boll with respect to boll positions. Field experiments were conducted using two cultivars of Kemian 1 and Sumian 15 with three planting dates of 25 April (mean daily temperature (MDT) was 28.0 and 25.4°C in 2010 and 2011, respectively), 25 May (MDT was 22.5 and 21.2°C in 2010 and 2011, respectively), and 10 Jun (MDT was 18.7 and 17.9°C in 2010 and 2011, respectively), and under three shading levels (crop relative light rates (CRLR) were 100, 80, and 60%) during 2010 and 2011 cotton boll development period (from anthesis to boll open stages). The main meteorological factors (temperature and light) affected seedcotton biomass per boll differently among different boll positions and cultivars. Mean daily radiation (MDR) affected seedcotton biomass per boll at all boll positions, except fruiting branch 2 (FB2) fruting node 1 (FN1). However, its influence was less than temperature factors, especially growing degree-days (GDD). Optimum mean daily maximum temperature (MDTmax) for seedcotton biomass per boll at FB11FN3 was 29.9–32.4°C, and the optimum MDR at aforementioned position was 15.8–17.5 MJ m
–2
. Definitely, these results can contribute to future cultural practices such as rational cultivars choice and distribution, simplifying field managements and mechanization to acquire more efficient and economical cotton management.
Reference
|
Related Articles
|
Metrics
Select
Effects of planting dates and shading on carbohydrate content, yield, and fiber quality in cotton with respect to fruiting positions
ZHAO Wen-qing, WU You, Zahoor Rizwan, WANG You-hua, MA Yi-na, CHEN Bing-lin, MENG Ya-li, ZHOU Zhi-guo
2018, 17 (
05
): 1106-1119. DOI:
10.1016/S2095-3119(17)61797-0
Abstract
(
473
)
PDF in ScienceDirect
Two cotton (
Gossypium hirsutum
L.) cultivars, Kemian 1 (cool temperature-tolerant) and Sumian 15 (cool temperature-sensitive) were used to study the effects of cool temperature on carbohydrates, yield, and fiber quality in cotton bolls located at different fruiting positions (FP). Cool temperatures were created using late planting and low light. The experiment was conducted in 2010 and 2011 using two planting dates (OPD, the optimized planting date, 25 April; LPD, the late planting date, 10 June) and two shading levels of crop relative light rate (CRLR, 100 and 60%). Compared with fruiting position 1 (FP1), cotton yield and yield components (fiber quality, leaf sucrose and starch content, and fiber cellulose) were all decreased on FP3 under all treatments. Compared with OPD-CRLR 100%, other treatments (OPD-CRLR 60%, LPD-CRLR 100%, and LPD-CRLR 60%) had significantly decreased lint yield at both FPs of both cultivars, but especially at FP3 and in Sumian 15; this decrease was mainly caused by a large decline in boll number. All fiber quality indices decreased under late planting and shading except fiber length at FP1 with OPD-CRLR 60%, and a greater reduction was observed at FP3 and in Sumian 15. Sucrose content of the subtending leaf and fiber increased under LPD compared to OPD, whereas it decreased under CRLR 60% compared to CRLR 100%, which led to decreased fiber cellulose content. Therefore, shading primarily decreased the “source” sucrose content in the subtending leaf whereas late planting diminished translocation of sucrose towards cotton fiber. Notably, as planting date was delayed and light was decreased, more carbohydrates were distributed to leaf and bolls at FP1 than those at FP3, resulting in higher yield and better fiber quality at FP1, and a higher proportion of bolls and carbohydrates allocated at FP3 of Kemian 1 compared to that of Sumian 15. In conclusion, cotton yield and fiber quality were reduced less at FP1 compared to those at FP3 under low temperature and low light conditions. Thus, reduced cotton yield and fiber quality loss can be minimized by selecting low temperature tolerant cultivars under both low temperature and light conditions.
Reference
|
Related Articles
|
Metrics