Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Development and molecular cytogenetic identification of a new wheat–rye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance
Guohao Han, Jing Wang, Hanwen Yan, Lijun Cao, Shiyu Liu, Xiuquan Li, Yilin Zhou, Wei Liu, Tiantian Gu, Zhipeng Shi, Hong Liu, Lihui Li, Diaoguo An
2025, 24 (1): 72-84.   DOI: 10.1016/j.jia.2023.10.004
Abstract61)      PDF in ScienceDirect      
Powdery mildew is a serious disease caused by Blumeria graminis f. sp. tritici (Bgt) that critically threatens the yield and quality of wheat (Triticum aestivum L.).  Using effective powdery mildew resistance genes is the optimal method for controlling this disease.  Against the background of high genetic homogeneity among the modern commercial cultivars that are mainly derived from conventional interbreeding, the resistance genes from wheat relatives have especially prominent advantages.  Octoploid triticale, produced from common wheat and rye (Secale cereale L.) through distant hybridization, is a new synthetic species and valuable gene donor for wheat improvement.  In this study, we developed the wheat–rye line YT5 through the hybridization of octaploid triticale and two wheat lines.  YT5 was confirmed to be a 6RL ditelosomic addition and 1R (1B) substitution line using genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization (mc-FISH), multicolor GISH (mc-GISH) and molecular marker analysis.  Genetic analysis showed that the powdery mildew resistance in YT5 was derived from the rye chromosome arm 6RL.  After inoculation with different Bgt isolates at the seedling stage, YT5 had compound reaction patterns with both obvious spores and hypersensitivity, and it gradually became highly resistant until the adult-plant stage, thus showing a resistance response significantly different from the reported Pm genes from rye chromosome 6RL.  YT5 also showed promising agronomic performance, so it is expected to be an elite resistance donor for wheat improvement.  To promote the transfer of the chromosome arm 6RL of YT5 in marker-assisted selection (MAS) breeding, we selected and verified two 6RL-specific kompetitive allele-specific PCR (KASP) markers that can be applied to efficiently detect this chromosome arm in different wheat backgrounds.


Reference | Related Articles | Metrics

High-throughput screening system of citrus bacterial canker-associated transcription factors and its application to the regulation of citrus canker resistance

Jia Fu, Jie Fan, Chenxi Zhang, Yongyao Fu, Baohang Xian, Qiyuan Yu, Xin Huang, Wen Yang, Shanchun Chen, Yongrui He, Qiang Li
2024, 23 (1): 155-165.   DOI: 10.1016/j.jia.2023.11.011
Abstract173)      PDF in ScienceDirect      

One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker (CBC), caused by the bacteria Xanthomonas citri subsp. citri (Xcc).  Response to CBC is a complex process, with both protein-DNA as well as protein–protein interactions for the regulatory network.  To detect such interactions in CBC resistant regulation, a citrus high-throughput screening system with 203 CBC-inducible transcription factors (TFs), were developed.  Screening the upstream regulators of target by yeast-one hybrid (Y1H) methods was also performed.  A regulatory module of CBC resistance was identified based on this system.  One TF (CsDOF5.8) was explored due to its interactions with the 1-kb promoter fragment of CsPrx25, a resistant gene of CBC involved in reactive oxygen species (ROS) homeostasis regulation.  Electrophoretic mobility shift assay (EMSA), dual-LUC assays, as well as transient overexpression of CsDOF5.8, further validated the interactions and transcriptional regulation.  The CsDOF5.8CsPrx25 promoter interaction revealed a complex pathway that governs the regulation of CBC resistance via H2O2 homeostasis.  The high-throughput Y1H/Y2H screening system could be an efficient tool for studying regulatory pathways or network of CBC resistance regulation.  In addition, it could highlight the potential of these candidate genes as targets for efforts to breed CBC-resistant citrus varieties.

Reference | Related Articles | Metrics
Isolation and identification of Fusarium oxysporum f. sp. cubense in Fujian Province, China
WU Kai-li, CHEN Wei-zhong, YANG Shuai, WEN Ya, ZHENG Yu-ru, Wilfred Mabeche Anjago, YUN Ying-zi, WANG Zong-hua
2019, 18 (8): 1905-1913.   DOI: 10.1016/S2095-3119(18)62149-5
Abstract243)      PDF in ScienceDirect      
Fusarium wilt, caused by Fusarium oxyporum f. sp. cubense (Foc), is the most serious disease affecting banana production.  To clarify the distribution of the Foc races in Fujian Province of China, 79 soil samples were collected from four regions of Zhangzhou City, the primary banana production area in Fujian.  We isolated and identified 12 Foc strains based on internal transcribed spacer (ITS) sequence analysis, PCR amplification by using Foc-specific primers and pathogenicity assays.  Our analysis indicated that 11 isolates belong to Foc race 1, and 1 isolate belongs to the Foc tropical species race 4 (TR4).  Although TR4 has previously been reported to occur in primary banana-producing provinces, such as Hainan, Guangxi, and Guangdong of China, this is the first report of TR4 isolated from the soil in Fujian Province.  Monitoring the presence of Foc, in particular, the TR4 strains in the soil, is the basic strategy to prevent and control Fusarium wilt.
Reference | Related Articles | Metrics
First report of cereal cyst nematode (Heterodera filipjevi) on winter wheat in Shandong Province, China
ZHEN Hao-yang, PENG Huan,ZHAO Hong-hai, QI Yong-hong, HUANG Wen-kun, KONG Ling-an, LIANG Chen, WEN Yan-hua, PENG De-liang
2018, 17 (08): 1912-1913.   DOI: 10.1016/S2095-3119(18)61965-3
Abstract845)      PDF in ScienceDirect      
The cereal cyst nematodes (Heterodera avenae, Heterodera filipjevi, Heterodera latipons) are considered to be one of the most important plant parasitic nematodes attacking most cereals and can cause significant crop losses (Sikora 1988).  In China, H. filipjevi (Madzhidov 1981) Stelter, 1984, was first reported from Henan province (Peng et al. 2010) and a few years later in Anhui province and Xinjiang Uygur Autonomous Region (Peng et al. 2016, 2018) .  In December 2017, a survey for cereal cyst nematodes on winter wheat was conducted in Shandong Province, China.  A total of 79 samples that including roots and rhizosphere soil were collected.  Cysts and second-stage juveniles (J2s) were isolated from each soil sample using the sieving-decanting method.  Wheat roots were stained with acid fusion to observe the development of cereal cyst nematodes.  One sample collected from Yangzhuan Village in Huanggang Town, Shan County of Heze City (GPS 34°38´23.10´´N, 116°05´42.95´´E), Shandong Province, was found that the wheat roots were heavily parasitized by cyst nematodes, and most of the nematodes in roots had developed to fourth-stage (J4) in mid-December of 2017.  The morphological and molecular studies of cyst and J2s were carried out to confirm the identification of H. filipjevi in one winter wheat field soil and root sample from Shan County.  The cysts were lemon shaped with prominent vulval cone, brown to black in colour.  Cuticle with irregular zig-zag pattern.  Neck prominent, vulval cone bifenestrate with horseshoe-shaped fenestra, bullae and underbridge strongly developed.  The main morphometrics of cysts (n=8) were length (including neck) (688 to 948 μm, mean=794 μm, standard deviation=87 μm), width (465 to 620 μm, mean=529 μm, standard deviation=63 μm), neck length (71.5 to 126.3 μm, mean=86.5 μm, standard deviation=9.2 μm), fenestra length (43.8 to 71.3 μm, mean=58.0 μm, standard deviation=15.1 μm), fenestra width (19.8 to 32.0 μm, mean=25.0 μm, standard deviation=3.9 μm), length of vulval slit (8.1 to 9.7 μm, mean=9.1 μm, standard deviation=0.5 μm) and length of underbridge (64.5 to 101.3 μm, mean=82.6 μm, standard deviation=12.8 μm).  Measurements of J2s (n=10); body length (556.7 to 617.0 μm, mean=584.3 μm, standard deviation=23.2 μm); stylet (22.8 to 24.1 μm, mean=23.3 μm, standard deviation=0.4 μm), tail (59.6 to 68.6 μm, mean=65.8 μm, standard deviation=3.5 μm) and hyaline tail terminus (35.9 to 41.1 μm, mean=38.6 μm, standard deviation=2.1 μm).  Genomic DNA was isolated from single cysts (n=6), and the internal transcribed spacer regions were amplified with primers TW81 (5´-GTTTCCGTAGGTGAACCTGC-3´) and AB28 (5´-ATATGCTTAAGTTCAGCGGGT-3´) (Joyce et al. 1994) and 28S rDNA-D2/D3 regions were amplified with primers D2A (5´-ACAAGTACCGTGAGGGAAAGTTG-3´) and D3B (5´-TCGGAAGGAACCAGCTACTA-3´) (Subbotin et al. 2006).  The obtained internal transcribed spacer regions (ITSs) sequences (GenBank accession MG859977) is 99% identical to those of H. filipjevi from Turkey (KR704292.1 and KR704304.1), the United States (KP878490.1 and GU079654.1) and China (KY448473.1 and KY448473.1).  The obtained 28S rDNA-D2/D3 sequences (GenBank accession MG859980) also to be 99 to 100% identical to those of H. filipjevi from China (GU083597.1, KT314235.1, GU083592.1).  The species-specific primers of H. filipjevi (HfF1, 5´-CAGGACGAAACTCATTCAACCAA-3´; HfR1, 5´-AGGGCGAACAGGAGAAGATTAGA-3´) were also used to identify this population (Peng et al. 2013), the specific band was obtained species-specific primers of H. filipjevi.  Based on the morphological and molecular data, the species of the cyst-forming nematode was identified as H. filipjevi.  As far as we know, this is the first report of H. filipjevi in Shandong Province, China.  The population density of H. filipjevi were found much higher than those of other CCN, it can serious infect winter wheat at seedling stage which often cause economically damaging to wheat, so the spread of H. filipjevi would be a risk for the cereal production of Shandong province. 
Reference | Related Articles | Metrics
Multi-dimensional comprehensive evaluation reveals the characteristics of quality traits of wheat cultivars in the Huang-Huai wheat region of China
Zhipeng Shi, Guohao Han, Tiantian Gu, Hanwen Yan, Yujie Chang, Shiyu Zhuo, Lijun Cao, Lixian Xing, Yuping Liu, Xiaofang Li, Yelun Zhang, Diaoguo An
DOI: 10.1016/j.jia.2024.12.029 Online: 25 December 2024
Abstract21)      PDF in ScienceDirect      

Wheat (Triticum aestivum L.) quality is a major focus of wheat breeding, which is influenced by multiple factors. The Huang-Huai wheat region, one of the main wheat-producing areas in China, provides favourable conditions for cultivating wheat cultivars with strong-gluten and medium-strong-gluten. In this study, a systematic assessment of seven crucial quality traits and important genetic loci (Glu-1 and Sec-1) in 436 wheat cultivars in the Huang-Huai wheat region of China by principal component analysis (PCA) and fuzzy comprehensive evaluation (FCE) methods showed that the stability time (ST), stretch area (SA), and maximum resistance (MAXR) were identified as three key factors, which significantly influenced wheat quality. Glu-1 and Sec-1 primarily impacted these three traits and subsequently influenced wheat quality. Compared to Glu-A1 and Glu-B1, Glu-D1 has a more significant impact on the comprehensive evaluation value D, principal components PC1-PC3, and the main traits ST, SA and MAXR of PC1. Wheat cultivars carrying the high-molecular-weight glutenin subunit (HMW-GS) Dx5+Dy10 exhibited a notable improvement in ST, SA, and MAXR traits compared with those carrying HMW-GS Dx2+Dy12, suggesting that Dx5+Dy10 may enhance wheat quality by improving ST, SA, and MAXR. By combining the results of D value, GYT (genotype by yield×trait) index, and HMW-GS score, 20 high-quality and high yield wheat cultivars were identified, which can be used as elite parents for wheat quality breeding.

Reference | Related Articles | Metrics