Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Characterization of subunits encoded by SnRK1 and dissection of combinations among these subunits in sorghum (Sorghum bicolor L.)

XIAO Qian-lin, HUANG Tian-hui, ZHOU Chang, CHEN Wei-xi, CHA Jian-kui, WEI Xi-mei, XING Fang-yu, QIAN Meng-ya, MA Qian-nan, DUAN Hong, LIU Zhi-zhai
2023, 22 (2): 642-649.   DOI: 10.1016/j.jia.2022.08.068
Abstract284)      PDF in ScienceDirect      

Sucrose nonfermenting-related protein kinase 1 (SnRK1) is one of the critical serine/threonine protein kinases.  It commonly mediates plant growth and development, cross-talks with metabolism processes and physiological responses to biotic or abiotic stresses.  It plays a key role in distributing carbohydrates and sugar signal transporting.  In the present study, eight SnRK1 coding genes were identified in sorghum (Sorghum bicolor L.) via sequences alignment, with three for α subunits (SnRK1α1 to SnRK1α3), three for β (SnRK1β1 to SnRK1β3), and one for both γ (SnRK1γ) and βγ (SnRK1βγ).  These eight corresponding genes located on five chromosomes (Chr) of Chr1–3, Chr7, and Chr9 and presented collinearities to SnRK1s from maize and rice, exhibiting highly conserved domains within the same subunits from the three kinds of cereals.  Expression results via qRT-PCR showed that different coding genes of SnRK1s in sorghum possessed similar expression patterns except for SnRK1α3 with a low expression level in grains and SnRK1β2 with a relatively high expression level in inflorescences.  Results of subcellular localization in sorghum leaf protoplast showed that SnRK1α1/α2/α3/γ mainly located on organelles, while the rest four of SnRK1β1/β2/β3/βγ located on both membranes and some organelles.  Besides, three combinations were discovered among eight SnRK1 subunits in sorghum through yeast two hybrid, including α1-β2-βγ, α2-β3-γ, and α3-β3-γ.  These results provide informative references for the following functional dissection of SnRK1 subunits in sorghum.

Reference | Related Articles | Metrics
Genome-wide identification, expression and functional analysis of sugar transporters in sorghum (Sorghum bicolor L.) 
XIAO Qian-lin, LI Zhen, WANG Ya-yun, HOU Xian-bin, WEI Xi-mei, ZHAO Xiao, HUANG Lei, GUO Yan-jun, LIU Zhi-zhai
2022, 21 (10): 2848-2864.   DOI: 10.1016/j.jia.2022.07.034
Abstract331)      PDF in ScienceDirect      

Sugar transporters are essential for osmotic process regulation, various signaling pathways and plant growth and development.  Currently, few studies are available on the function of sugar transporters in sorghum (Sorghum bicolor L.).  In this study, we performed a genome-wide survey of sugar transporters in sorghum.  In total, 98 sorghum sugar transporters (SSTs) were identified via BLASTP.  These SSTs were classified into three families based on the phylogenetic and conserved domain analysis, including six sucrose transporters (SUTs), 23 sugars will eventually be exported transporters (SWEETs), and 69 monosaccharide transporters (MSTs).  The sorghum MSTs were further divided into seven subfamilies, including 24 STPs, 23 PLTs, two VGTs, four INTs, three pGlcT/SBG1s, five TMTs, and eight ERDs.  Chromosomal localization of the SST genes showed that they were randomly distributed on 10 chromosomes, and substantial clustering was evident on the specific chromosomes.  Twenty-seven SST genes from the families of SWEET, ERD, STP, and PLT were found to cluster in eight tandem repeat event regions.  In total, 22 SSTs comprising 11 paralogous pairs and accounting for 22.4% of all the genes were located on the duplicated blocks.  The different subfamilies of SST proteins possessed the same conserved domain, but there were some differences in features of the motif and transmembrane helices (TMH).  The publicly-accessible RNA-sequencing data and real-time PCR revealed that the SST genes exhibited distinctive tissue specific patterns.  Functional studies showed that seven SSTs were mainly located on the cell membrane and membrane organelles, and 14 of the SSTs could transport different types of monosaccharides in yeast.  These findings will help us to further elucidate their roles in the sorghum sugar transport and sugar signaling pathways.

Reference | Related Articles | Metrics