导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((WANG Zhen-lin[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Characteristics of lodging resistance of high-yield winter wheat as affected by nitrogen rate and irrigation managements
LI Wen-qian, HAN Ming-ming, PANG Dang-wei, CHEN Jin, WANG Yuan-yuan, DONG He-he, CHANG Yong-lan, JIN Min, LUO Yong-li, LI Yong, WANG Zhen-lin
2022, 21 (
5
): 1290-1309. DOI:
10.1016/S2095-3119(20)63566-3
Abstract
(
279
)
PDF in ScienceDirect
High yields of wheat are mainly obtained through a high level of nitrogen and irrigation supplementation. However, excessive nitrogen and irrigation supplication increase the risk of lodging. The main objectives of this work were to clarify the capacity of lodging resistance of wheat in response to nitrogen and irrigation, as well as to explore the effective ways of improving lodging resistance in a high-yield wheat cultivar. In this study, field experiments were conducted in the 2015–2016 and 2016–2017 growing seasons. A wheat cultivar Jimai 22 (JM22), which is widely planted in the northern of Huang-Huai winter wheat region, was grown at Tai’an, Shandong Province, under three nitrogen rates and four irrigation treatments. The lodging risk was increased with increased nitrogen rate, as indicated by increasing lodging index (LI) and lodging rate across both growing seasons. With nitrogen increasing, the plant height, the basal internode length and the center of gravity height, which were positively correlated with LI, increased significantly. While the density of the basal 2nd internode (for culm and leaf sheath) and cell wall component contents, which were negatively correlated with LI, decreased conspicuous along with nitrogen increased. Increasing irrigation supplementation increased the 2nd internode culm wall thickness, breaking strength and leaf sheath density within limits which increased stem strength. Among the treatments, nitrogen application at a rate of 240 kg ha
–1
and irrigation application at 600 m3 ha
–1
at both the jointing and anthesis stages resulted in the highest yield and strongest stem. A suitable plant height ensures sufficient biomass for high yield, and higher stem stiffness, which was primarily attributed to thicker culm wall, greater density of the culm and leaf sheaths and higher cell wall component contents are the characteristics that should be taken into account to improving wheat lodging resistance.
Reference
|
Related Articles
|
Metrics
Select
Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat
CHEN Jin, PANG Dang-wei, JIN Min, LUO Yong-li, LI Hao-yu, LI Yong, WANG Zhen-lin
2020, 19 (
5
): 1215-1226. DOI:
10.1016/S2095-3119(19)62679-1
Abstract
(
137
)
PDF in ScienceDirect
In the North China Plain (NCP), soil deterioration threatens winter wheat (
Triticum aestivum
L.) production. Although rotary tillage or plowing tillage are two methods commonly used in this region, research characterizing the effects of mixed tillage on soil characteristics and wheat yield has been limited. A fixed-site field trial was carried out during 2011–2016 to examine the impacts of three tillage practices (5-year rotary tillage with maize straw removal (RT); 5-year rotary tillage with maize straw return (RS); and annual RS and with a deep plowing interval of 2 years (RS/DS)) on soil characteristics and root distribution in the plough layer. Straw return significantly decreased soil bulk density, increased soil organic carbon (SOC) storage and SOC content, macro-aggregate proportion (
R
0.25
) and its stability in the plough layer. The RS/DS treatment significantly increased the SOC content, total nitrogen (TN), and root length density (RLD) in the 10–40 cm layer, and enhanced the proportion of RLD in the 20–30 and 30–40 cm layers. In the 20–30 and 30–40 cm layers, an increase in SOC and TN could lead to higher grain production than commensurate increases in the surface layer, resulting in a sustainable increase in grain yield from the RS/DS treatment. Thus, the RS/DS treatment could lead to high productivity of winter wheat by improving soil characteristics and root distribution at the deeper plough layer in the NCP.
Reference
|
Related Articles
|
Metrics
Select
Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat
CHEN Jin, ZHENG Meng-jing, PANG Dang-wei, YIN Yan-ping, HAN Ming-ming, LI Yan-xia, LUO Yong-li, XU Xu, LI Yong, WANG Zhen-lin
2017, 16 (
08
): 1708-1719. DOI:
10.1016/S2095-3119(16)61589-7
Abstract
(
1015
)
PDF in ScienceDirect
Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing and rotary tillage practices are widespread in the region, only few studies have focused on rotation tillage. To determine the effects of maize straw return on the nitrogen (N) efficiency and grain yield of winter wheat (
Triticum aestivum
L.), we conducted experiments in this region for 3 years. Five treatments were tested: (i) rotary tillage without straw return (RT); (ii) deep plowing tillage without straw return (DT); (iii) rotary tillage with total straw return (RS); (iv) deep plowing tillage with total straw return (DS); (v) rotary tillage of 2 years and deep plowing tillage in the 3rd year with total straw return (TS). Treatments with straw return increased kernels no. ear
–1
, thousand-kernel weight (TKW), grain yields, ratio of dry matter accumulation post-anthesis, and nitrogen (N) efficiency whereas reduced the ears no. ha
–1
in the 2011–2012 and 2012–2013 growing seasons. Compared with the rotary tillage, deep plowing tillage significantly increased the grain yield, yield components, total dry matter accumulation, and N efficiency in 2013–2014. RS had significantly higher straw N distribution, soil inorganic nitrogen content, and soil enzymes activities in the 0–10 cm soil layer compared with the DS and TS. However, significantly lower values were observed in the 10–20 and 20–30 cm soil layers. TS obtained approximately equal grain yield as DS, and it also reduced the resource costs. Therefore, we conclude that TS is the most economical method for increasing grain yield and N efficiency of winter wheat in Huang-Huai-Hai Plain.
Reference
|
Related Articles
|
Metrics
Select
Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H
2
S) donor, can protect seedlings against heat stress in wheat (
Triticum aestivum
L.)
YANG Min, QIN Bao-ping, MA Xue-li, WANG Ping, LI Mei-ling, CHEN Lu-lu, CHEN Lei-tai, SUN Aiqing, WANG Zhen-lin, YIN Yan-ping
2016, 15 (
12
): 2745-2758. DOI:
10.1016/S2095-3119(16)61358-8
Abstract
(
1312
)
PDF in ScienceDirect
Temperature extremes represent an important limiting factor to plant growth and productivity. Low concentration of hydrogen sulfide (H
2
S) has been proven to function in physiological responses to various stresses. The present study evaluated the effect of foliar application of wheat seedlings with a H
2
S donor, sodium hydrosulfide (NaHS), on the response to acute heat stress. The results showed that pretreatment with NaHS could promote heat tolerance of wheat seedlings in a dose-dependent manner. Again, it was verified that H
2
S, rather than other sulfur-containing components or sodion derived from NaHS solution, should contribute to the positive role in promoting wheat seedlings against heat stress. To further study antioxidant mechanisms of NaHS-induced heat tolerance, superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) activities, and H
2
S, hydrogen peroxide (H
2
O
2
), malonaldehyde (MDA), and soluble sugar contents in wheat seedlings were determined. The results showed that, under heat stress, the activities of SOD, CAT, and APX, H
2
S, H
2
O
2
, MDA, and soluble sugar contents in NaHS-pretreated seedlings and its control all increased. Meanwhile, NaHS-pretreated seedlings showed higher antioxidant enzymes activities and gene expression levels as well as the H
2
S and soluble sugar levels, and lower H
2
O
2
, MDA contents induced by heat stress. While little effect was detected in antioxidant enzymes activities and soluble substances contents in pretreated wheat seedlings compared with its control under normal culture conditions (data not shown). All of our results suggested that exogenous NaHS could alleviate oxidative damage and improve heat tolerance by regulating the antioxidant system in wheat seedlings under heat stress.
Reference
|
Related Articles
|
Metrics
Select
Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum L.) due to the delaying of leaf senescence
XU Cai-long, TAO Hong-bin, WANG Pu, WANG Zhen-lin
2016, 15 (
1
): 63-75. DOI:
10.1016/S2095-3119(15)61047-4
Abstract
(
1793
)
PDF in ScienceDirect
The solar radiation intensity and duration are continuously decreasing in the major wheat planting area of China. As a consequence, leaf senescence, photosynthesis, grain filling and thus wheat yield shall be affected by light deficiency. Therefore, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Ji’nan 17 (a multiple-spike cultivar), were subjected to shading during anthesis and maturity under field condition in 2010–2011 and 2011–2012. Under the slight shading treatment (S1, 88% of full sunshine), leaf senescence was delayed, net photosynthesis rate (Pn) and canopy apparent photosynthesis rate (CAP) were improved, and thus thousand-kernel weight (TKW) and grain yield were higher as compared with the control. However, mid and severe shading (S2 and S3, 67 and 35% of full sunshine, respectively) led to negative effects on these traits substantially. Moreover, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in flag leaf were significantly greater under slight shading than those in other treatments, while the malondialdehyde (MDA) content was less than that under other treatments. In addition, the multiple-spike cultivar is more tolerant to shading than large-spike cultivar. In conclusion, slight shading after anthesis delayed leaf senescence, enhanced photosynthesis and grain filling, and thus resulted in higher grain yield.
Reference
|
Related Articles
|
Metrics
Select
Physiological basis for the differences of productive capacity among tillers in winter wheat
XU Hai-cheng, CAI Tie, WANG Zhen-lin, HE Ming-rong
2015, 14 (
10
): 1958-1970. DOI:
10.1016/S2095-3119(15)61094-2
Abstract
(
1415
)
PDF in ScienceDirect
The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Two winter wheat cultivars, Shannong 15 (SN15) and Shannong 8355 (SN8355), were used to investigate the differences of productive capacity among tillers and analyze the physiological mechanisms that determine the superior tiller group. Low-position tillers (early initiated tillers) had a higher yield per spike than high-position tillers (late initiated tillers) in both cultivars, which was due to their more grain number per spike, more fertile spikelet per spike, less sterile spikelet per spike and higher grain weight. According to cluster analysis, tillers of SN15 were classified into 2 groups: superior tiller group including main stem (0), the first primary tiller (I) and the second primary tiller (II); and inferior tiller group including the third primary tiller (III) and the first secondary tiller (I-p). Tillers of SN8355 were classified into 3 groups: superior tiller group (0 and I), intermediate tiller group (II and III) and inferior tiller group (I-p). In comparison with other tiller groups, the superior tiller group had higher photosynthetic rate of flag leaves, higher antioxidant enzyme (SOD, POD and CAT) activities and lower levels of lipid peroxidation in leaves, higher grain filling rate in both superior and inferior grains during grain filling, higher single-stem biological yield and larger single-stem economic coefficient. Correlation analysis showed that yield per spike was positively and significantly correlated with the flag leaf photosynthetic rate, grain filling rate, the antioxidant enzyme activities and soluble protein content (except for SN15 at 5 days post-anthesis (DPA)) of flag leaf, the single-stem biological yield, and the single-stem economic coefficient. Remarkable negative correlation was also found between yield per spike and MDA content of flag leaf. These results suggested that superior tiller group had stronger leaf photosynthetic capacity, more predominance in terms of grain filling, slower senescence rate, higher biological yield and larger economic coefficient, and therefore, showed greater productive capacity than other tiller groups.
Reference
|
Related Articles
|
Metrics
Select
Ethylene and Spermidine in Wheat Grains in Relation to Starch Content and Granule Size Distribution Under Water Deficit
YANG Wei-bing, LI Yong, YIN Yan-ping, JIANG Wen-wen, PENG Dian-liang, CUI Zheng-yong, YANG Dong-qing , WANG Zhen-lin
2014, 13 (
10
): 2141-2153. DOI:
10.1016/S2095-3119(13)60726-1
Abstract
(
1447
)
PDF in ScienceDirect
Two wheat cultivars (Triticum aestivum L.) were used to evaluate the effects of post-anthesis severe water deficit (SD) on starch content and granule size distribution and their relations with ethylene and spermidine (Spd). Comparison to the well-watered (WW) treatment, SD led to lower Spd and higher 1-aminocylopropane-1-carboxylic acid (ACC) concentrations and ethylene evolution rate (EER) in grains at the critical stage of forming starch granules. Application of Spd or aminoethoxyvinylglycine (AVG) significantly reduced ACC concentration and EER and increased Spd concentration, while ethephon or methylglyoxal-bis (MGBG) had an opposite impact. The volume and surface area distribution of starch granules showed a bimodal curve, while the number distribution exhibited a unimodal curve. SD caused a marked drop in grain weight, grain number and starch content, also led to a significant reduction in the proportion (both by volume and by surface area) of B-type starch granules (<10 μm), with an increase in those of A-type starch granules (>10 μm). Application of Spd or AVG increased the proportion (both by volume and by surface area) of B-type starch granules under SD. Correlation analysis suggested that ethylene and Spd showed an antagonism relation in the formation of B-type granules. These results suggested that it would be good for the formation of B-type starch granules to have the physiological traits of higher Spd and lower ACC concentrations and ethylene emission under SD.
Reference
|
Related Articles
|
Metrics