Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Evaluation of soil flame disinfestation (SFD) for controlling weeds, nematodes and fungi
WANG Xiao-ning, CAO Ao-cheng, YAN Dong-dong, WANG Qian, HUANG Bin, ZHU Jia-hong, WANG Qiu-xia, LI Yuan, OUYANG Can-bin, GUO Mei-xia, WANG Qian
2020, 19 (1): 164-172.   DOI: 10.1016/S2095-3119(19)62809-1
Abstract140)      PDF in ScienceDirect      
Soil flame disinfestation (SFD) is a form of physical disinfestation that can be used both in greenhouses and on field crops.  Its use for soil disinfestation in different crop growing conditions makes it increasingly attractive for controlling soil-borne pathogens and weeds.  But little is known about the effect on weeds and soilbrone diseases.  This study reports on greenhouses and field crops in China that determined the efficacy of SFD to control weeds, nematodes and fungi.  It also determined the impact of SFD on the soil physical and chemical properties (water content, bulk density, NO3-N content, NH4+-N content, conductivity and organic matter) in three field trials.  A second generation SFD machine was used in these trials.  SFD treatment significantly reduced weeds (>87.8%) and root-knot nematodes (Meloidogyne incognita) (>98.1%).  Plant height and crop yield was significantly increased with SFD treatment.  NO3-N and NH4+-N increased after the SFD treatment, and there was also an increase in soil conductivity.  Water content, bulk density and organic matter decreased significantly in the soil after the SFD treatment compared to the control.  Soil flame disinfestation is a potential technique for controlling weeds and diseases in greenhouses or in fields.  SFD is a non-chemical, safe, environmentally-friendly soil disinfection method. 
Reference | Related Articles | Metrics
The synergistic advantage of combining chloropicrin or dazomet with fosthiazate nematicide to control root-knot nematode in cucumber production
HUANG Bin, WANG Qian, GUO Mei-xia, FANG Wen-sheng, WANG Xiao-ning, WANG Qiu-xia, YAN Dong-dong, OUYANG Can-bin, LI Yuan, CAO Ao-cheng
2019, 18 (9): 2093-2106.   DOI: 10.1016/S2095-3119(19)62565-7
Abstract154)      PDF in ScienceDirect      
The highly-damaging root-knot nematode (Meloidogyne spp., RKN) cannot be reliably controlled using only a nematicide such as fosthiazate because of increasing pest resistance.  In laboratory and greenhouse trials, we showed that chloropicrin (CP) or dazomet (DZ) synergized the efficacy of fosthiazate against RKN.  The combination significantly extended the degradation half-life of fosthiazate by an average of about 1.25 times.  CP or DZ with fosthiazate reduced the time for fosthiazate to penetrate the RKN cuticle compared to fosthiazate alone.  CP or DZ combined with low or medium rate of fosthiazate increased the total cucumber yield, compared to the use of each product alone.  A low-dose fosthiazate with DZ improved total yield more than a low dose fosthiazate with CP.  Extending the half-life of fosthiazate and reducing the time for fosthiazate or fumigant to penetrate the RKN cuticle were the two features that gave the fumigant-fosthiazate combination its synergistic advantage over these products used singularly.  This synergy provides the opportunity for farmers to use a low dose of fosthiazate which lowers the risk of RKN resistance.  Farmers could combine DZ at 30 g m–2 with fosthiazate at a low rate of 0.375 g m–2 to control RKN and adequately control two major soil-borne diseases in cucumber greenhouses.
Reference | Related Articles | Metrics