Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Genome-wide association study for numbers of vertebrae in Dezhou donkey population reveals new candidate genes
SUN Yan, LI Yu-hua, ZHAO Chang-heng, TENG Jun, WANG Yong-hui , WANG Tian-qi, SHI Xiao-yuan, LIU Zi-wen, LI Hai-jing, WANG Ji-jing, WANG Wen-wen, NING Chao, WANG Chang-fa, ZHANG Qin
2023, 22 (10): 3159-3169.   DOI: 10.1016/j.jia.2023.04.038
Abstract284)      PDF in ScienceDirect      

Numbers of vertebrae is an important economic trait associated with body size and meat productivity in animals.  However, the genetic basis of vertebrae number in donkey remains to be well understood.  The aim of this study was to identify candidate genes affecting the number of thoracic (TVn) and the number of lumbar vertebrae (LVn) in Dezhou donkey.  A genome-wide association study was conducted using whole genome sequence data imputed from low-coverage genome sequencing.  For TVn, we identified 38 genome-wide significant and 64 suggestive SNPs, which relate to 7 genes (NLGN1, DCC, SLC26A7, TOX, WNT7A, LOC123286078, and LOC123280142).  For LVn, we identified 9 genome-wide significant and 38 suggestive SNPs, which relate to 8 genes (GABBR2, FBXO4, LOC123277146, LOC123277359, BMP7, B3GAT1, EML2, and LRP5).  The genes involve in the Wnt and TGF-β signaling pathways and may play an important role in embryonic development or bone formation and could be good candidate genes for TVn and LVn.

Reference | Related Articles | Metrics
Concentration difference of auxin involved in stem development in soybean
JIANG Zhen-feng, LIU Dan-dan, WANG Tian-qiong, LIANG Xi-long, CUI Yu-hai, LIU Zhi-hua, LI Wen-bin
2020, 19 (4): 953-964.   DOI: 10.1016/S2095-3119(19)62676-6
Abstract169)      PDF in ScienceDirect      
Auxin regulates cell division and elongation of the primordial cells through its concentration and then shaped the plant architecture.  Cell division and elongation form the internode of soybean and result in different plant heights and lodging resistance.  Yet the mechanisms behind are unclear in soybean.  To elucidate the mechanism of the concentration difference of auxin related to stem development in soybean, samples of apical shoot, elongation zone, and mature zone from the developing stems of soybean seedlings, Charleston, were harvested and measured for auxin concentration distributions and metabolites to identify the common underlying mechanisms responsible for concentration difference of auxin.  Distribution of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and methylindole-3-acetic acid (Me-IAA) were determined and auxin concentration distributions were found to have a complex regulation mechanism.  The concentrations of IAA and Me-IAA in apical shoot were significantly different between elongation zone and mature zone resulting in an IAA gradient.  Tryptophan dependent pathway from tryptamine directly to IAA or through indole-3-acetonitrile to IAA and from indole-3-propionic acid (IPA) to IAA were three primary IAA synthesis pathways.  Moreover, some plant metabolites from flavonoid and phenylpropanoid synthesis pathways showed similar or reverse gradient and should involve in auxin homeostasis and concentration difference.  All the data give the first insight in the concentration difference and homeostasis of auxin in soybean seedlings and facilitate a deeper understanding of the molecular mechanism of stem development and growth.  The gathered information also helps to elucidate how plant height is formed in soybean and what strategy should be adopted to regulate the lodging resistance in soybean.
Reference | Related Articles | Metrics