Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Plant-based meat substitutes by high-moisture extrusion: Visualizing the whole process in data systematically from raw material to the products
ZHANG Jin-chuang, MENG Zhen, CHENG Qiong-ling, LI Qi-zhai, ZHANG Yu-jie, LIU Li, SHI Ai-min, WANG Qiang
2022, 21 (8): 2435-2444.   DOI: 10.1016/S2095-3119(21)63892-3
Abstract190)      PDF in ScienceDirect      

High-moisture extrusion technology should be considered one of the best choices for producing plant-based meat substitutes with the rich fibrous structure offered by real animal meat products.  Unfortunately, the extrusion process has been seen as a “black box” with limited information about what occurs inside, causing serious obstacles in developing meat substitutes.  This study designed a high-moisture extrusion process and developed 10 new plant-based meat substitutes comparable to the fibrous structure of real animal meat.  The study used the Feature-Augmented Principal Component Analysis (FA-PCA) method to visualize and understand the whole extrusion process in three ways systematically and accurately.  It established six sets of mathematical models of the high-moisture extrusion process based on 8 000 pieces of data, including five types of parameters.  The FA-PCA method improved the R2 values significantly compared with the PCA method.  The Way 3 was the best to predict product quality (Z), demonstrating that the gradually molecular conformational changes (Yn´) were critical in controlling the final quality of the plant-based meat substitutes.  Moreover, the first visualization platform software for the high-moisture extrusion process has been established to clearly show the “black box” by combining the virtual simulation technology.  Through the software, some practice work such as equipment installation, parameter adjustment, equipment disassembly, and data prediction can be easily achieved.

Reference | Related Articles | Metrics
Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism
ZHAO Zhi-hao, SHI Ai-min, GUO Rui, LIU Hong-zhi, HU Hui, WANG Qiang
2022, 21 (3): 878-891.   DOI: 10.1016/S2095-3119(21)63851-0
Abstract137)      PDF in ScienceDirect      
High-oleic acid peanut oil (HOPO) and extra-virgin olive oil (EVOO) have been reported previously to have an attenuating effect on metabolic syndrome (MS).  This study aimed to evaluate the metabolic effect of HOPO and EVOO supplementation in attenuating MS and the role of gut microbiota in regulating the metabolic profile.  Sprague-Dawley rats were continuously fed with a normal diet, high-fructose and high-fat (HFHF) diet, HFHF diet containing HOPO, or a HFHF diet containing EVOO for 12 weeks.  The metabolomics profiles of feces and serum samples were compared using untargeted metabolomics based on UPLC-Q/TOF-MS.  Partial Least Squares Discriminant Analysis (PLS-DA) was used to identify the potential fecal and serum biomarkers from different groups.  Correlation between gut microbiota and biomarkers was assessed, and pathway analysis of serum biomarkers was conducted.  Differences in metabolic patterns in feces and serum were observed among different groups.  There were 8 and 12 potential biomarkers in feces and 15 and 6 potential biomarkers in serum of HOPO group and EVOO group, respectively, suggesting that HOPO and EVOO supplementation mainly altered amino acids, peptides, and their analogs in feces and serum.  The branched-chain amino acids (BCAAs) biosynthesis pathway was identified as a major pathway regulated by HOPO or EVOO.  This study suggests that HOPO and EVOO supplementation ameliorate diet-induced MS, mainly via modulation of the BCAAs biosynthesis pathway.
Reference | Related Articles | Metrics
An optimized industry processing technology of peanut tofu and the novel prediction model for suitable peanut varieties
CHEN Bing-yu, LI Qi-zhai, HU Hui, MENG Shi, Faisal SHAH, WANG Qiang, LIU Hong-zhi
2020, 19 (9): 2340-2351.   DOI: 10.1016/S2095-3119(20)63249-X
Abstract142)      PDF in ScienceDirect      
Peanut protein is easily digested and absorbed by the human body, and peanut tofu does not contain flatulence factors and beany flour.  However, at present, there is no industrial preparation process of peanut tofu, whereas the quality of tofu prepared by different peanut varieties is quite different.  This study established an industrial feasible production process of peanut tofu and optimized the key process that regulates its quality.  Compared with the existing method, the production time is reduced by 53.80%, therefore the daily production output is increased by 183.33%.  The chemical properties of 26 peanut varieties and the quality characteristics of tofu prepared from these 26 varieties were determined.  The peanut varieties were classified based on the quality characteristics of tofu using the hierarchical cluster analysis (HCA) method, out of which 7 varieties were screened out which were suitable for preparing peanut tofu.  An evaluation standard was founded based on peanut tofu qualities.  Six chemical trait indexes were correlated with peanut tofu qualities (P<0.05).  A logistic regressive model was developed to predict suitable peanut varieties and this prediction model was verified.  This study may help broaden the peanut protein utilization, and provide guidance for breeding experts to select certain varieties for product specific cultivation of peanut.
Reference | Related Articles | Metrics
One-time fertilization at first flowering improves lint yield and dry matter partitioning in late planted short-season cotton
LUO Hong-hai, WANG Qiang, ZHANG Jie-kun, WANG Lei-shan, LI Ya-bing, YANG Guo-zheng
2020, 19 (2): 509-517.   DOI: 10.1016/S2095-3119(19)62623-7
Abstract132)      PDF in ScienceDirect      
Cotton producers have substantially reduced their inputs (labor, nutrients, and management) mainly by adopting a short-season cropping management that is characterized by late sowing, high density, and reduced fertilization with one-time application at the first bloom stage without lint yield reduction.  However, it has been hypothesized that one-time fertilization at an earlier growth stage could be a more effective and economic management practice.  A two-year field experiment was conducted by applying five fertilizer one-time fertilization at 0 (FT1), 5 (FT2), 10 (FT3), 15 (FT4), and 20 (FT5) days after the first flower appeared in the field and one three-split fertilizer application taken as the conventional control (FT6), making six treatments altogether.  Cotton growth period, biomass accumulation, yield, and its formation were quantified.  The results showed that the one-time fertilization did not affect the cotton growth progress as compared to FT6, however, the total crop cycles for FT3–FT5 were 3 days shorter.  FT1 produced the highest cotton lint yield (1 396 kg ha–1), which was similar to the FT6 but higher than the other treatments, and could be attributed to more bolls per unit area and higher lint percentage. Cotton yield was positively correlated with cotton plant biomass accumulated.  FT1 had both the highest average (VT) (193.7 kg ha–1 d–1) and the highest maximum (VM) (220.9 kg ha–1 d–1) rates during the fast biomass accumulation period.  These results suggest that one-time fertilizer application at the first flower stage might be an adjustment that is more effective than at first bloom, and allowed for easier decision making for application date due to non counting of plants with flowers is needed.
 
Reference | Related Articles | Metrics
Relationship of chemical properties of different peanut varieties to peanut butter storage stability
GONG A-na, SHI Ai-min, LIU Hong-zhi, YU Hong-wei, LIU Li, LIN Wei-jing, WANG Qiang
2018, 17 (05): 1003-1010.   DOI: 10.1016/S2095-3119(18)61919-7
Abstract671)      PDF in ScienceDirect      
This study examined the effect of peanut quality on the storage stability of peanut butter.  The quality of 17 varieties of peanuts was analyzed, and each was used to prepare peanut butter.  For different storage temperatures and durations, stability of the peanut butter was measured according to three indicators: peroxide value, acid value, and centrifugal rate.  The correlation between peanut components and peanut butter storage stability was also investigated.  The results indicated significant differences in fatty acid composition between different varieties of peanut.  Peanut butter prepared with high oleic peanuts (Kainong 17-15) had a significantly longer shelf life than that of other varieties.  The significant correlation between the stability of peanut butter and peanut quality suggests that oleic acid and linoleic acid were the main influencing factors on stability.  This study finds that the high oleic peanuts (HOP) is the most suitable variety for making peanut butter, which can allow farmers and processors to choose the specific variety for better product and shelf life. 
Reference | Related Articles | Metrics
Editorial- Agricultural products processing characteristics and quality evaluation
WANG Qiang
2018, 17 (05): 975-976.   DOI: 10.1016/S2095-3119(18)61960-4
Abstract499)      PDF in ScienceDirect      
Cereal, oil and fruit are the foundation of human survival which attracted much attention by their quality characteristics and products.  Currently, there are about 410 000 wheat resources (Drikvand et al. 2013), 215 000 rice resources (Kaur et al. 2014), 35 000 peanut resources (Wang et al. 2014), and 7 000 apple resources (Nie et al. 2013).  The processing characteristics of different agricultural product raw materials are different.  And for a long time, lots of research are focusing on the development of processing technology.  The background and basis of different agricultural product raw materials, especially for the processing characteristics, is still unclear while the relationship between raw materials and products is just beginning.  According to the research, American peanut has been divided into four types while Virginia suitable for salt-baked, Runner suitable for butter, Spanish suitable for confectionery and Valencia suitable for roasting (Wang et al. 2017).  However, the lacking of process quality evaluation model, method and standard is still the bottleneck restricting the healthy development of agricultural product processing industry.  This special focus provides the most methods and updated knowledge of processing characteristics and quality evaluation.
In the aspect of characteristic detection, Nagamoto et al. (2018) developed a microplate assay method for determining the contents of triacylglycerols (TAGs), phosphatidylcholines (PCs), and free fatty acids (FFAs) in the rice bran of one grain using enzymatic reactions.  This novel method could be used for screening oil-rich rice lines in the future rice processing.  And for the relationship between raw material characteristics and product quality, Cho et al. (2018) identified how the different levels of nitrogen application affected the variances of gluten properties and end-use qualities and the differences of variances among Korean wheat cultivars.  The Korean wheat cultivars showed a high proportion of (α+β)-gliadin increase for bread, a high proportion of γ-gliadin decrease for noodles and a high proportion of ω-gliadin decreased for cookies.  And Yan et al. (2018) also tested ten indices from 106 apple cultivars and finally found malic acid (Mal), total organic acids (ToA), and acidity value (AcV) of apple were normally distributed, titratable acid (TiA) was close to normally distributed, whereas pH value had a skewed distribution.  Using the fitted normal distribution curves, the grading standards of Mal, TiA, ToA, and AcV were established.  This study provides a scientific basis for evaluating apple flavor and selecting apple cultivars. 
Actually, the finally purpose for the processing characteristics and quality evaluation is to find the special varieties for processing which could enhance the quality and value of products.  And Wang et al. (2018) could give a good example.  They clarified the relationship between peanut quality and storage stability of peanut butter.  It concluded that oleic acid and linoleic acid values of the peanut materials have greater impact on the storage stability of peanut butter while two peanuts varieties as HOP and Open 17-15 had the longest shelf life for butter. 
I genuinely believe that the readers of the Journal of  Integrative Agriculture will be interested in these articles and inspired with the findings of the papers for developing future research on the given topics.  I want to express my deep appreciation to all authors for their high-quality contributions and efforts to this special focus.
Related Articles | Metrics
Review on the processing characteristics of cereals and oilseeds and their processing suitability evaluation technology
WANG Qiang, LIU Hong-zhi, SHI Ai-min, HU Hui, LIU Li, WANG Li, YU Hong-wei
2017, 16 (12): 2886-2897.   DOI: 10.1016/S2095-3119(17)61799-4
Abstract709)      PDF (1108KB)(96)      
Cereals and oilseeds are the foundation of human survival which have attracted much attention due to their nutritional and functional properties for maintaining the healthy life.  There are abundant varieties of cereals and oilseeds, however, for a long time, their process suitabilities are still unknown, resulting in the lack of precision processing.  This paper summarized the characteristics of cereals and oilseeds, including sensory, physicochemical and processing qualities, their characteristic fingerprinting and products qualities.  Furthermore, the quality fast detection method was also analyzed.  It also explored the role of mathematical model and the standard evaluation index to determine the process suitability and discussed the opportunity for advanced model capability.  We also prospected on scientific problems for expanding the predictive capabilities for processing suitabilities of these abundant varieties, focusing on the better results and advancements towards the processing of cereals and oilseeds products and improvement of their quality.  
Reference | Related Articles | Metrics
Pesticide residues in bayberry (Myrica rubra) and probabilistic risk assessment for consumers in Zhejiang, China
YANG Gui-ling, WANG Wen, LIANG Sen-miao, YU Yi-jun, ZHAO Hui-yu, WANG Qiang, QIAN Yongzhong
2017, 16 (09): 2101-2109.   DOI: 10.1016/S2095-3119(16)61600-3
Abstract672)      PDF in ScienceDirect      
    As pesticide residues in bayberry has raised serious concern from the public in China, a monitoring survey was carried out during 2013–2014 and 157 samples were analyzed in total.  Twenty-three pesticides were detected among the 44 pesticides analyzed and at least one pesticide was detected in 63% of 99 samples.  Whereas 45.6% of samples were found with two or more pesticide residues, and 23.6% of samples with four or more pesticide residues.  Probabilistic risk assessments indicated that estimated daily intake (EDI) of cyhalothrin at the P97.5th percentile level is 1.11 times larger than the acceptable daily intake (ADI) for children, the estimated short-term intake (ESTI) at the P97.5th percentile level is 1.9 and 1.78 times larger than the acute reference dose (ARfD) for adult and children, respectively, indicating the potential risk concern from pyrethroids.  EDI of the pesticides with anti-androgenic effects ranged from 0.15–2.46 of ADI, the probability of exposure exceeding the ADI was 7.1 and 31.1% for adults and children, respectively, the probability of exposure of pyrethroids exceeding the ADI was 3.8% for children.  Exposures for other pesticides and groups were below 1.0.  Because the co-occurrence of frequency of cyhalothrin and cypermethrin was 9.55%, the combinations of pesticides detected with anti-androgenic effects has not been found in the present monitoring, the results indicate that the pesticide residues in bayberry will not constitute serious public health risk, however, they are significant for the management of pesticide use on bayberry and dietary health risk in China. 
Reference | Related Articles | Metrics
Analysis of Variations in White-Belly and White-Core Rice Kernels Within a Panicle and the Effect of Panicle Type
ZHANG Xin-cheng, Md A. Alim, LIN Zhao-miao, LIU Zheng-hui, LI Gang-hua, WANG Qiang-sheng
2014, 13 (8): 1672-1679.   DOI: 10.1016/S2095-3119(13)60593-6
Abstract1072)      PDF in ScienceDirect      
This study aims to investigate the variation in occurrence of white-belly rice kernel (WBRK) and white-core rice kernel (WCRK) among different positions within a panicle. Twenty-four M4 mutants involved in four panicle types, namely the compact, intermediate, loose, and chicken foot panicle were used. They derived from a japonica rice cultivar Wuyujing 3. Considerable differences in morphological characters existed among the four types of panicle, especially in panicle length, the secondary branch number and ratio of grain number to total branch length. Marked differences were found in WBRK and WCRK among different positions within a panicle for all types of panicle. In general, grains located on the primary rachis and top rachis branches had higher WBRK and WCRK percentage than those on the secondary rachis and bottom rachis branches. WCRK exhibited larger variation among grain positions than WBRK did. Moreover, there was a significant difference in WCRK/WBRK among grain positions within a panicle, with primary rachis and top rachis branches having higher values than the secondary and bottom rachis. In addition, panicle type showed no significant effect on the pattern of WBRK and WCRK occurrence within a panicle. The results indicated the difference in mechanism of WBRK and WCRK formation in grain position within a panicle, and are valuable for breeding and agronomic practices aimed at lowering chalky grain rate.
Reference | Related Articles | Metrics
Effect of Nitric Oxide on Alleviating Cadmium Toxicity in Rice (Oryza sativa L.)
ZHAO Xiu-feng, CHEN Lin, Muhammad I A Rehmani, WANG Qiang-sheng, WANG Shao-hua, HOU Pengfu, LI Gang-hua , DING Yan-feng
2013, 12 (9): 1540-1550.   DOI: 10.1016/S2095-3119(13)60417-7
Abstract1841)      PDF in ScienceDirect      
Nitric oxide (NO) is a gaseous signaling molecule in plants that plays a key role in mediating a wide range of physiological processes and responses to biotic and abiotic stresses. The present study was conducted to investigate the effects of the exogenous application of sodium nitroprusside (SNP), an NO donor, on cadmium (Cd)-induced oxidative stress and Cd uptake in rice plants. Rice plants were exposed to Cd stress (0.2 mmol L-1 CdCl2) and different concentrations of SNP (0.05, 0.1, 0.2, and 0.4 mmol L-1). A SNP concentration of 0.1 mmol L-1 (SNP10) significantly reduced the Cd-induced decrease in shoot and root dry weights and leaf chlorophyll concentrations. The addition of NO also reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2) and ascorbic acid (ASA) concentrations. However, the reduction in glutathione (GSH) concentration was inhibited by NO treatment. Moreover, NO prevented the Cd-induced increase in antioxidative enzyme activity. The amount of Cd accumulation in rice plants was also influenced by the addition of NO. The NO supplied by the SNP enhanced the Cd tolerance of the rice by increasing the Cd uptake by the roots and decreasing the Cd accumulation by the shoots. However, the application of potassium ferrocyanide (Cd+Fe) or sodium nitrate and nitrite (Cd+N) (without NO release), did not exhibit the effects of the SNP. Furthermore, the effects of the SNP were reversed by the addition of hemoglobin (an NO scavenger). Our results suggested that exogenous NO was involved in the resistance of rice to Cdtoxicity.
Reference | Related Articles | Metrics