Compared with sole nitrate (NO3–) or sole ammonium (NH4+) supply, mixed nitrogen (N) supply may promote growth of maize seedlings. Previous study suggested that mixed N supply not only increased photosynthesis rate, but also enhanced leaf growth by increasing auxin synthesis to build a large sink for C and N utilization. However, whether this process depends on N absorption is unknown. Here, maize seedlings were grown hydroponically with three N forms (NO3– only, 75/25 NO3–/NH4+ and NH4+ only). The study results suggested that maize growth rate and N content of shoots under mixed N supply was little different to that under sole NO3– supply at 0–3 d, but was higher than under sole NO3– supply at 6–9 d. 15N influx rate under mixed N supply was greater than under sole NO3– or NH4+ supply at 6–9 d, although NO3– and NH4+ influx under mixed N supply were reduced compared to sole NO3– and NH4+ supply, respectively. qRT-PCR determination suggested that the increased N absorption under mixed N supply may be related to the higher expression of NO3– transporters in roots, such as ZmNRT1.1A, ZmNRT1.1B, ZmNRT1.1C, ZmNRT1.2 and ZmNRT1.3, or NH4+ absorption transporters, such as ZmAMT1.1A, especially the latter. Furthermore, plants had higher nitrate reductase (NR) glutamine synthase (GS) activity and amino acid content under mixed N supply than when under sole NO3– supply. The experiments with inhibitors of NR reductase and GS synthase further confirmed that N assimilation ability under mixed N supply was necessary to promote maize growth, especially for the reduction of NO3– by NR reductase. This research suggested that the increased processes of NO3– and NH4+ assimilation by improving N-absorption ability of roots under mixed N supply may be the main driving force to increase maize growth.
Various genetic and biochemical characteristics exist in tea plant cultivars, and they largely determine production suitability and tea quality. Here, we performed transcriptomic and metabolomic analyses of young shoots of seven tea cultivars and identified major regulatory transcription factors (TFs) for the characteristic metabolites in different cultivars based on weighted gene co-expression network analysis (WGCNA). Phenotypically, we found that ‘Tieguanyin’ (TGY) and ‘Fujian Shuixian’ (FJSX), which are suitable for oolong tea, had higher catechin contents. The metabolites of ‘Jinxuan’ (JX) were more prominent, especially the contents of phenolic acids, flavonoids, terpenes, and tannins, which were higher than those of the other six cultivars. Moreover, ‘Fudingdabai’ (FDDB), which is suitable for white tea, was rich in amino acids, linolenic acid, and saccharides. At the molecular level, hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HCT) (CsTGY12G0001876, and CsTGY06G0003042) led to the accumulation of chlorogenic acid in TGY. The main reason for the higher l-ascorbic acid content in FJSX was the high expression levels of L-galactono-1,4-lactone hydrogenase (GalLDH) (CsTGY13G0000389) and Myo-inositol oxygenase (MIOX) (CsTGY14G0001769, and CsTGY14G0001770), which were regulated by WRKY (CsTGY11G0001197). Furthermore, FDDB, ‘Longjing 43’ (LJ43), ‘Shuchazao’ (SCZ) and ‘Baihaozao’ (BHZ) had higher free fatty acid contents, among which MYB (CsTGY14G0002344) may be a hub gene for the regulation of palmitoleic acid accumulation. More importantly, we found that the shoots of TGY were green with purple, mainly due to the accumulation of anthocyanins and the downregulation of the Mg-protoporphyrin IX nonomethyl ester cyclase (MPEC) (CsTGY10G0001989) gene that affects chlorophyll synthesis. These results will provide a theoretical reference for tea cultivar breeding and suitability.