Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings
WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua
2023, 22 (6): 1896-1908.   DOI: 10.1016/j.jia.2023.04.037
Abstract202)      PDF in ScienceDirect      

Compared with sole nitrate (NO3) or sole ammonium (NH4+) supply, mixed nitrogen (N) supply may promote growth of maize seedlings.  Previous study suggested that mixed N supply not only increased photosynthesis rate, but also enhanced leaf growth by increasing auxin synthesis to build a large sink for C and N utilization.  However, whether this process depends on N absorption is unknown.  Here, maize seedlings were grown hydroponically with three N forms (NO3 only, 75/25 NO3/NH4+ and NH4+ only).  The study results suggested that maize growth rate and N content of shoots under mixed N supply was little different to that under sole NO3 supply at 0–3 d, but was higher than under sole NO3 supply at 6–9 d.  15N influx rate under mixed N supply was greater than under sole NO3 or NH4+ supply at 6–9 d, although NO3 and NH4+ influx under mixed N supply were reduced compared to sole NO3 and NH4+ supply, respectively.  qRT-PCR determination suggested that the increased N absorption under mixed N supply may be related to the higher expression of NO3 transporters in roots, such as ZmNRT1.1A, ZmNRT1.1B, ZmNRT1.1C, ZmNRT1.2 and ZmNRT1.3, or NH4+ absorption transporters, such as ZmAMT1.1A, especially the latter.  Furthermore, plants had higher nitrate reductase (NR) glutamine synthase (GS) activity and amino acid content under mixed N supply than when under sole NO3 supply.  The experiments with inhibitors of NR reductase and GS synthase further confirmed that N assimilation ability under mixed N supply was necessary to promote maize growth, especially for the reduction of NO3 by NR reductase.  This research suggested that the increased processes of NO3 and NH4+ assimilation by improving N-absorption ability of roots under mixed N supply may be the main driving force to increase maize growth.


Reference | Related Articles | Metrics
Differential metabolites and their transcriptional regulation in seven major tea cultivars (Camellia sinensis) in China
GAO Ting, HOU Bing-hao, SHAO Shu-xian, XU Meng-ting, ZHENG Yu-cheng, JIN Shan, WANG Peng-jie, YE Nai-xing
2023, 22 (11): 3346-3363.   DOI: 10.1016/j.jia.2023.02.009
Abstract409)      PDF in ScienceDirect      

Various genetic and biochemical characteristics exist in tea plant cultivars, and they largely determine production suitability and tea quality.  Here, we performed transcriptomic and metabolomic analyses of young shoots of seven tea cultivars and identified major regulatory transcription factors (TFs) for the characteristic metabolites in different cultivars based on weighted gene co-expression network analysis (WGCNA).  Phenotypically, we found that ‘Tieguanyin’ (TGY) and ‘Fujian Shuixian’ (FJSX), which are suitable for oolong tea, had higher catechin contents.  The metabolites of ‘Jinxuan’ (JX) were more prominent, especially the contents of phenolic acids, flavonoids, terpenes, and tannins, which were higher than those of the other six cultivars.  Moreover, ‘Fudingdabai’ (FDDB), which is suitable for white tea, was rich in amino acids, linolenic acid, and saccharides.  At the molecular level, hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HCT) (CsTGY12G0001876, and CsTGY06G0003042) led to the accumulation of chlorogenic acid in TGY.  The main reason for the higher l-ascorbic acid content in FJSX was the high expression levels of L-galactono-1,4-lactone hydrogenase (GalLDH) (CsTGY13G0000389) and Myo-inositol oxygenase (MIOX) (CsTGY14G0001769, and CsTGY14G0001770), which were regulated by WRKY (CsTGY11G0001197).  Furthermore, FDDB, ‘Longjing 43’ (LJ43), ‘Shuchazao’ (SCZ)  and ‘Baihaozao’ (BHZ) had higher free fatty acid contents, among which MYB (CsTGY14G0002344) may be a hub gene for the regulation of palmitoleic acid accumulation.  More importantly, we found that the shoots of TGY were green with purple, mainly due to the accumulation of anthocyanins and the downregulation of the Mg-protoporphyrin IX nonomethyl ester cyclase (MPEC) (CsTGY10G0001989) gene that affects chlorophyll synthesis.  These results will provide a theoretical reference for tea cultivar breeding and suitability.

Reference | Related Articles | Metrics
Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs
WANG Peng-fei, WANG Ming, SHI Zhi-bin, SUN Zhen-zhao, WEI Li-li, LIU Zai-si, WANG Shi-da, HE Xi-jun, WANG Jing-fei
2022, 21 (3): 819-825.   DOI: 10.1016/S2095-3119(21)63767-X
Abstract222)      PDF in ScienceDirect      
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a devastating disease of domestic and wild pigs.  There is no effective vaccine, and the control of the disease relies mainly on surveillance and early detection of infected pigs.  Previously, serological assays, such as ELISA, have been developed mainly based on recombinant structural viral proteins of ASFV, including p72, p54, and p30.  However, the antibodies against these proteins do not provide efficient protection against ASFV infection in pigs.  Therefore, new serological assays that can be applied for clinical diagnosis and evaluating serological immune response in vaccinated pigs are still required.  In this study, we expressed and purified a recombinant pB602L protein.  The purified pB602L protein was then used as an antigen to develop an indirect ELISA assay.  This assay has no cross-reaction with the anti-sera against the 15 most common pig pathogens in China, such as classical swine fever virus, pseudorabies virus, and porcine parvovirus.  This assay and a commercial ELISA kit were then used to detect 60 field pig serum samples, including an unknown number of anti-ASFV sera.  The coincidence of the two assays was 95%.  Furthermore, the pB602L-based ELISA was employed to test the antibody responses to the seven-gene-deleted ASFV strain HLJ/18-7GD in pigs.  The results showed that the antibody levels in all vaccinated pigs, starting from the 10th day post-inoculation, have increased continuously during the observation period of 45 days.  Our results indicate that this pB602L-based indirect ELISA assay can be employed potentially in the field of ASFV diagnosis.
Reference | Related Articles | Metrics
Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23
GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you
2021, 20 (9): 2410-2423.   DOI: 10.1016/S2095-3119(20)63558-4
Abstract152)      PDF in ScienceDirect      
Mildew resistance locus O (MLO) is a plant-specific gene family that plays an important role in the growth and development of plants and their interactions with the environment.  However, the available information on this gene family in pear is limited.  Here, 24 PbrMLO genes were identified and divided into five subfamilies (I, II, III, IV and V).  Whole-genome duplication (WGD) and dispersed duplication contributed to the expansion of the PbrMLO family.  In addition, gene expression analysis revealed that PbrMLO genes were distributed in various pear tissues, suggesting their diverse functions.  We selected PbrMLO23 for further functional analysis.  Expression profile analysis by qRT-PCR showed that PbrMLO23 was highly expressed in pollen.  Subcellular localization analysis showed that PbrMLO23 was located on the plasma membrane.  When the expression level of PbrMLO23 was knocked down by using antisense oligonucleotides, pollen tube lengths increased, indicating that PbrMLO23 plays a functional role in inhibiting pollen tube growth.  In summary, these results provide evolutionary insight into PbrMLO and its functional characteristics and lay a foundation for further analysis of the functions of PbrMLO members in pear.
 
Reference | Related Articles | Metrics
Genetic effects and plant architecture influences on outcrossing rate in soybean
YAN Hao, ZHANG Jing-yong, ZHANG Chun-bao, PENG Bao, ZHANG Wei-long, WANG Peng-nian, DING Xiao-yang, LIU Bao-hui, FENG Xian-zhong, ZHAO Li-mei
2019, 18 (9): 1971-1979.   DOI: 10.1016/S2095-3119(18)62054-4
Abstract168)      PDF in ScienceDirect      
Outcrossing rate is an important determinant of cytoplasmic male sterile (CMS) breeding and hybrid seed production for heterosis in soybean.  Parental lines with a high outcrossing rate were screened for backcross breeding to obtain the high outcrossing rate maintenance B-lines and sterile A-lines.  Application in production practices will help to increase hybrid soybean production.  In this study, JLCMS82B and JLCMS89B were selected as parents for the construction of outcrossing rate segregation populations, and the progeny-array approach (PAA) and glyphosate resistant gene markers were used to determine outcrossing rates.  We found that: (1) The outcrossing rate between JLCMS82B and JLCMS89B was significantly different; (2) the outcrossing rate of the F2 segregating populations was a quantitative trait, though whether an additive or epistatic effect exists required analysis with a triple test intersection analysis; (3) agronomic traits correlated with outcrossing rate; outcrossing rate was the highest with plant height of about 84 cm, lower number of plant branches, earlier flowering time, larger angle between the branches and the main stem, and with more divergent plant morphology.  Correlation analysis between agronomic traits and outcrossing rate can effectively guide the screening of parents with a high outcrossing rate.
 
Reference | Related Articles | Metrics
Interaction effect of nitrogen form and planting density on plant growth and nutrient uptake in maize seedlings
WANG Peng, WANG Zhang-kui, SUN Xi-chao, MU Xiao-huan, CHEN Huan, CHEN Fan-jun, Yuan Lixing, MI Guo-hua
2019, 18 (5): 1120-1129.   DOI: 10.1016/S2095-3119(18)61977-X
Abstract876)      PDF in ScienceDirect      
High planting density is essential to increasing maize grain yield.  However, single plants suffer from insufficient light under high planting density.  Ammonium (NH4+) assimilation consumes less energy converted from radiation than nitrate (NO3).  It is hypothesized that a mixed NO3/NH4+supply is more important to improving plant growth and population productivity under high vs. low planting density.  Maize plants were grown under hydroponic conditions at two planting densities (low density: 208 plants m–2 and high density: 667 plants m–2) and three nitrogen forms (nitrate only, 75/25NO3/NH4+ and ammonium only).  A significant interaction effect was found between planting density and N form on plant biomass.  Compared to nitrate only, 75/25NO3/NH4+ increased per-plant biomass by 44% under low density, but by 81% under high density.  Treatment with 75/25NO3/NH4+ increased plant ATP, photosynthetic rate, and carbon amount per plant by 31, 7, and 44% under low density, respectively, but by 51, 23, and 95% under high density.  Accordingly, carbon level per plant under 75/25NO3/NH4+ was improved, which increased leaf area, specific leaf weight and total root length, especially for high planting density, increased by 57, 17 and 63%, respectively.  Furthermore, under low density, 75/25NO3/NH4+ increased nitrogen uptake rate, while under high density, 75/25NO3/NH4+ increased nitrogen, phosphorus, copper and iron uptake rates.  By increasing energy use efficiency, an optimum NO3/NH4+ ratio can improve plant growth and nutrient uptake efficiency, especially under high planting density.  In summary, an appropriate supply of NH4+ in addition to nitrate can greatly improve plant growth and promote population productivity of maize under high planting density, and therefore a mixed N form is recommended for high-yielding maize management in the field.
Reference | Related Articles | Metrics
Effect of continuous negative pressure water supply on the growth, development and physiological mechanism of Capsicum annuum L.
LI Di, LONG Huai-yu, ZHANG Shu-xiang, WU Xue-ping, SHAO Hong-ying, WANG Peng
2017, 16 (09): 1978-1899.   DOI: 10.1016/S2095-3119(16)61572-1
Abstract772)      PDF in ScienceDirect      
Effects of continuous negative pressure water supply on water consumption, growth and development, as well as physiological mechanism and quality of Capsicum annuum L. were investigated in this paper.  Meanwhile, the optimal negative pressure water supply conditions for growth of C. annuum L. were screened out to achieve the goals of water conservation, high yield and high quality, thus providing theoretical foundation for its field production.  The pot experiment within the greenhouse was utilized; the continuous negative pressure water supply was adopted; the four treatments, artificial watering (CK), –5 kPa (T1), –10 kPa (T2), and –15 kPa (T3) were set; and the daily water consumption, yield, as well as the biomass, nitrate reductase, root activity, vitamin C, capsaicin, and nutrient uptakes of nitrogen (N), phosphorus (P) and potassium (K) during various stages of its growth were determined.  Compared with CK, when the water supply pressure was controlled at –5 to –15 kPa in the experiment, the total water consumption of C. annuum L. reduced by 53.42 to 67.75%, the total water consumption intensity reduced by 54.29 to 67.14%, and the water use efficiency increased by 12.66 to 124.67%.  The N accumulation in a single strain of C. annuum L. from the color turning stage to the red ripe stage increased by 15.99 to 100.55%, respectively, compared with that of CK; the P accumulation increased by 20.47 to 154.00% relative to that of CK, and the K accumulation increased by 64.92 to 144.9% compared with that of CK.  Compared with CK, C. annuum L. yield was remarkably improved by 13.79% at T1, and contents of vitamin C, capsaicin as well as carotenoids at all growth stages were enhanced by 13.42–147.01%, 11.54–71.01%, and 41.1–568.06%, respectively.  Nitrate reductase activity, root activity and chlorophyll (a+b) were markedly increased by 335.78–500%, 79.6–140.68% and 114.95–676.19%, respectively, from immature stage to full ripe stage.  Adopting the continuous negative pressure water supply for C. annuum L. has a significant water-saving effect, and the water supply pressure being stable at –5 kPa contributes to its growth and development, improves yield, enhances root activity, promotes nutrient uptake, and improves its quality, thus achieving the effects of water conservation, high yield, high quality and high efficiency.
Reference | Related Articles | Metrics
Relations Between Photosynthetic Parameters and Seed Yields of Adzuki Bean Cultivars (Vigna angularis)
SONG Hui, GAO Jin-feng, GAO Xiao-li, DAI Hui-ping, ZHANG Pan-an, FENG Bai-li, WANG Peng-ke
2012, 12 (9): 1453-1461.   DOI: 10.1016/S1671-2927(00)8677
Abstract1472)      PDF in ScienceDirect      
The study comparatively examined the leaf photosynthetic capacities of different adzuki bean cultivars, high-yield 2000-75 and Jihong 9218, and low-yield Hongbao 1 and Wanxuan 1 from flowering to ripening. It showed that after flowering, the leaves of the cultivars gradually aged, the leaf chlorophyll (Chl.), soluble protein (SP) contents, net photosynthetic rates (Pn), transpiration rates (Tr) and stomatal conductance (Gs) of the cultivars tended to decline, but the leaf intercellular CO2 concentration (Ci) of the cultivars tended to rise. The leaf photosynthetic capacities of the cultivars decreased gradually from the lower to the upper nodes. The dry seed yields of the cultivars were positively correlated with their leaf Chl., SP, Pn, and Tr and Gs, and negatively associated with their leaf Ci. At the late growth stages, the high-yield cultivars maintained higher leaf Chl. contents, SP contents, Pn, Tr, and Gs than the low-yield cultivars, indicating that leaf photosynthetic capacity was one of important yield-affecting factors of adzuki bean. Therefore, it was important for a crop at the crucial stage of yield formation to maintain a high leaf chlorophyll content and a high leaf photosynthetic capacity and delay leaf aging.
Reference | Related Articles | Metrics