Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions

XU Chun-mei, XIAO De-shun, CHEN Song, CHU Guang, LIU Yuan-hui, ZHANG Xiu-fu, WANG Dan-ying
2023, 22 (3): 923-934.   DOI: 10.1016/j.jia.2022.08.036
Abstract268)      PDF in ScienceDirect      

Soil microorganisms play important roles in nitrogen transformation.  The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods (continuous flooding (CF), continuous flooding and aeration (CFA), and alternate wetting and drying (AWD)).  The abundances of amoA ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering (S1), heading (S2), and ripening (S3) stages.  We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN), with the concentration of soil nitrate and ammonium nitrogen.  The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments.  AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong.  During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively.  The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively.  The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase.  All the above indicators were positively correlated with soil MBC and MBN.  In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2.  Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation. 

Reference | Related Articles | Metrics
Geographic variation in the yield formation of single-season high-yielding hybrid rice in southern China
WANG Dan-ying, LI Xu-yi, YE Chang, XU Chun-mei, CHEN Song, CHU Guang, ZHANG Yun-bo, ZHANG Xiu-fu
2021, 20 (2): 438-449.   DOI: 10.1016/S2095-3119(20)63360-3
Abstract85)      PDF in ScienceDirect      
Environmental conditions greatly affect the growth of rice. To investigate the geographic differences in yield formation of single-season high-yielding hybrid rice in southern China, experiments were conducted in 2017 and 2018 in the upper and middle–lower reaches of the Yangtze River with 10–30 main locally planted high-yielding hybrid cultivars used as materials. Compared with rice planted in the middle–lower reaches of the Yangtze River, rice planted in the upper reaches has a longer tillering duration, higher accumulated temperature (≥10°C) during tillering period, but lower accumulated temperature and solar radiation from initial booting to maturity. Yield traits comparison between the upper and the middle–lower reaches of Yangtze River showed that the former had 48.1% more panicles per unit area while the latter had 46.4% more grains per panicle; the rice yield in the former was positively correlated with the seed setting rate and the dry matter accumulation before heading, while the latter was positively correlated with grains per panicle and dry matter accumulation from booting to maturity. Comparison of the same variety Tianyouhuazhan planted in different regions showed there was a significant positive correlation between panicle number and the duration of and accumulated temperature during the tillering period (r=0.982**, r=0.993**, respectively), and between grains per panicle and accumulated solar radiation during booting period (r=0.952*). In the upper reaches of the Yangtze River, more than 90% of cultivars with an yield of greater than 11 t ha–1 had an effective panicle number of 250–340 m–2, and there was a significant negative correlation between seed setting rate and grains per panicle; therefore, the high-yielding rice production in these regions with a long effective tillering period (>40 d) should choose varieties with moderate grains per panicle, adopt crop managements such as good fertilizer and water measures during vegetative growth period to ensure a certain number of effective panicles, and to increase the dry matter accumulation before heading. While in regions with a short effective tillering period (<20 d) but good sunshine conditions during the reproductive growth period, such as the middle–lower reaches of the Yangtze River, high-yielding rice production should choose cultivars with large panicles, adopt good water and fertilizer managements during the reproductive growth period to ensure the formation of large panicles and the increase of dry matter accumulation after heading.
Related Articles | Metrics
Photosynthesis and Dry Matter Accumulation in Different Chlorophyll-Deficient Rice Lines
WANG Dan-ying, CHEN Song, TIAO Long-xing, ZHANG Xiu-fu
2012, 12 (3): 397-404.   DOI: 10.1016/S1671-2927(00)8557
Abstract1778)      PDF in ScienceDirect      
Three different chlorophyll-deficient rice isogenic lines chl, fgl and pgl, and their recurrent parent zhefu802 (zf802) wereused to study effects of leaf color on photosynthesis, dry matter accumulation, yield, and quality in early season indicarice. Analysis showed that the chlorophyll (Chl.) a/b ratio of isogenic lines chl-8, pgl and fgl was 5.35, 10.00 and 15.46,respectively, among them, line fgl had higher leaf area index (LAI), higher net photosynthetic rate and higher grain-fillingrate than its recurrent parent zf802 at the later period of grain filling stage; while LAI, net photosynthetic rate and drymatter accumulated in lines chl-8 and pgl were lower than in zf802. Differences were found in the grain yield and qualityamong chlorophyll deficient isogenic lines, lines fgl, chl-8 and zf802 had similar grain yield, which was significantly higherthan that of pgl; the highest milling quality was observed in isogenic line fgl, with relatively high protein content. Thisstudy showed that isogenic line fgl would become a unique material for the development of high yield rice with high grainquality because of its slow aging process and relative steady grain-filling rate.
Reference | Related Articles | Metrics