Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone
WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing
2022, 21 (7): 2042-2054.   DOI: 10.1016/S2095-3119(21)63712-7
Abstract214)      PDF in ScienceDirect      
Herbivore-induced plant volatiles (HIPVs) play a key role in the interactions between plants and herbivorous insects, as HIPVs can promote or deter herbivorous insects’ behavior.  While aphids are common and serious phloem-feeding pests in farmland ecosystems, little is known about how aphids use their sensitive olfactory system to detect HIPVs.  In this study, the antennal transcriptomes of the aphid species Megoura crassicauda were sequenced, and expression level analyses of M. crassicauda odorant receptors (ORs) were carried out.  To investigate the chemoreception mechanisms that M. crassicauda uses to detect HIPVs, we performed in vitro functional studies of the ORs using 11 HIPVs reported to be released by aphid-infested plants.  In total, 54 candidate chemosensory genes were identified, among which 20 genes were ORs.  McraOR20 and McraOR43 were selected for further functional characterization because their homologs in aphids were quite conserved and their expression levels in antennae of M. crassicauda were relatively high.  The results showed that McraOR20 specifically detected cis-jasmone, as did its ortholog ApisOR20 from the pea aphid Acyrthosiphon pisum, while McraOR43 did not respond to any of the HIPV chemicals that were tested.  This study characterized the ability of the homologous OR20 receptors in the two aphid species to detect HIPV cis-jasmone, and provides a candidate olfactory target for mediating aphid behaviors.  
Reference | Related Articles | Metrics
Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum
HUANG Tian-yu, ZHANG Rui-bin, YANG Lu-lu, CAO Song, Frederic FRANCIS, WANG Bing, WANG Gui-rong
2022, 21 (5): 1414-1423.   DOI: 10.1016/S2095-3119(20)63577-8
Abstract236)      PDF in ScienceDirect      
Pea aphid, Acyrthosiphon pisum, is a serious pest of many different leguminous plants, and it mainly relies on its odorant receptors (Ors) to discriminate among host species.  However, less is known about the role that Ors play in the host plant location.  In this study, we identified a novel conserved odorant receptor clade by phylogenetic analysis, and conducted the functional analysis of ApisOr23 in A. pisum.  The results showed that the homologous Ors from A. pisum, Aphis glycines and Aphis gossypii share 94.28% identity in amino acid sequences.  Moreover, conserved motifs were analyzed using the annotated homologous Or23 from eight aphid species, providing further proof of the high conservation level of the Or23 clade.  According to the tissue expression pattern analysis, ApisOr23 was mainly expressed in the antennae.  Further functional study using a heterologous Xenopus expression system revealed that ApisOr23 was tuned to five plant volatiles, namely trans-2-hexen-1-al, cis-2-hexen-1-ol, 1-heptanol, 4´-ethylacetophenone, and hexyl acetate.  Among them, trans-2-hexen-1-al, which is one of the main volatile organic compounds released from legume plants, activated the highest response of ApisOr23.  Our findings suggest that the conserved Or23 clade in most aphid species might play an important role in host plant detection.

Reference | Related Articles | Metrics
Polycalin isinvolved in the action mechanism of Cry2Aa toxin in Helicoverpa armigera (Hübner)
WANG Bing-jie, WANG Ya-nan, WEI Ji-zhen, LIU Chen, CHEN Lin, Myint Myint Khaing, LIANG Ge-mei
2019, 18 (3): 627-635.   DOI: 10.1016/S1671-2927(00)12174
Abstract165)      PDF (392KB)(161)      
Related Articles | Metrics
A mitochondrial phosphate transporter, McPht gene, confers an acclimation regulation of the transgenic rice to phosphorus deficiency
HAN Jiao, YU Guo-hong, WANG Li, LI Wei, HE Rui, WANG Bing, HUANG Sheng-cai, CHENG Xian-guo
2018, 17 (09): 1932-1945.   DOI: 10.1016/S2095-3119(17)61792-1
Abstract382)      PDF in ScienceDirect      
Phosphate transporters play an important role in promoting the uptake and transport of phosphate in plants.  In this study, the McPht gene from the Mesembryanthemum crystallinum, a mitochondrial phosphate transporter, was isolated and constructed onto a constitutive expression vector carrying 35S::GFP, and the recombinant constructs were transferred into Oryza sativa japonica L. cv. Kitaake to investigate the regulatory role of the McPht gene under phosphorus deficiency.  The McPht gene encodes a protein of 357 amino acids with six transmembrane domains and is located to the mitochondria, and the mRNA transcripts of the McPht gene are highly accumulated in the shoots of M. crystallinum in response to phosphorus deficiency.  However, more mRNA transcripts of the McPht gene were accumulated in the roots of the transgenic rice under phosphorus deficiency.  Measurements showed that the transgenic rice demonstrated an enhanced promotion in the root development, the root activities, and phosphate uptake under phosphorus deficiency.  Transcriptome sequencing showed that the transgenic rice exhibited total of 198 differentially expressed genes.  Of these, total of 154 differentially expressed genes were up-regulated and total 44 genes were down-regulated comparing to the wild type in response to phosphorus deficiency.  The selective six genes of the up-regulated differentially expressed genes showed an enhanced increase in mRNA transcripts in response to phosphorus deficiency, however, the transcripts of the mitochondrial carrier protein transporter in rice, a homologous gene of the McPht,  in both the transgenic line and the wild type had no obvious differences.  Functional enrichment analyses revealed that the most of the up-regulated genes are involved in the cytoplasmic membrane-bounded vesicle, and most of the down-regulated genes are involved in the mitochondrion and cytoplasmic membrane-bounded vesicle.  The differentially expressed genes were highly enriched in plant secondary metabolisms and plant-pathogen interaction.  These results indicated that the overexpression of the McPht gene might participate in the physiological adaptive modulation of the transgenic rice to phosphorus deficiency by up- or down-regulating the differentially expressed genes.
 
Reference | Related Articles | Metrics
Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content
NING Chuan-chuan, GAO Peng-dong, WANG Bing-qing, LIN Wei-peng, JIANG Ni-hao, CAI Kun-zheng
2017, 16 (08): 1819-1831.   DOI: 10.1016/S2095-3119(16)61476-4
Abstract745)      PDF in ScienceDirect      
    Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmentally sound approaches to develop sustainable agriculture. This study investigated and evaluated the effects of mineral fertilizer reduction and partial substitution of organic amendment on soil fertility and heavy metal content in a 10-season continually planted vegetable field during 2009–2012. The experiment included four treatments: 100% chemical fertilizer (CF100), 80% chemical fertilizer (CF80), 60% chemical fertilizer and 20% organic fertilizer (CF60+OM20), and 40% chemical fertilizer and 40% organic fertilizer (CF40+OM40). Soil nutrients, enzyme activity and heavy metal content were determined. The results showed that single chemical fertilizer reduction (CF80) had no significant effect on soil organic matter content, soil catalase activity and soil heavy metal content, but slightly reduced soil available N, P, K, and soil urease activity, and significantly reduced soil acid phosphatase activity. Compared with CF100, 40 or 60% reduction of chemical fertilizer supplemented with organic fertilizer (CF60+OM20, CF40+OM40) significantly increased soil organic matter, soil catalase activity and urease activity especially in last several seasons, but reduced soil available P, K, and soil acid phosphatase activity. In addition, continuous application of organic fertilizer resulted in higher accumulation of Zn, Cd, and Cr in soil in the late stage of experiment, which may induce adverse effects on soil health and food safety.
Reference | Related Articles | Metrics
Variation of Potential Nitrification and Ammonia-Oxidizing Bacterial Community with Plant-Growing Period in Apple Orchard Soil
LIU Ling-zhi, QIN Si-jun, Lü De-guo, WANG Bing-ying , YANG Ze-yuan
2014, 13 (2): 415-425.   DOI: 10.1016/S2095-3119(13)60424-4
Abstract1782)      PDF in ScienceDirect      
In this study, we investigated the potential nitrification and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of environmental factors on nitrification activity and AOB community composition in the soil of a Hanfu apple orchard, using a culture-dependent technique and denaturing gradient gel electrophoresis (DGGE). We observed that nitrification activity and AOB abundance were the highest in November, lower in May, and the lowest in July. The results of statistical analysis indicated that total nitrogen (N) content, NH4 +-N content, NO3 --N content, and pH showed significant correlations with AOB abundance and nitrification activity in soil. The Shannon-Winner diversity, as well as species richness and evenness indices (determined by PCR-DGGE banding patterns) in soil samples were the highest in September, but the lowest in July, when compared to additional sampled dates. The DGGE fingerprints of soil-based 16S rRNA genes in November were apparently distinct from those observed in May, July, and September, possessing the lowest species richness indices and the highest dominance indices among all four growth periods. Fourteen DGGE bands were excised for sequencing. The resulting analysis indicated that all AOB communities belonged to the β-Proteobacteria phylum, with the dominant AOB showing high similarity to the Nitrosospira genus. Therefore, soil-based environmental factors, such as pH variation and content of NH4 +-N and NO3 --N, can substantially influence the abundance of AOB communities in soil, and play a critical role in soil-based nitrification kinetics.
Reference | Related Articles | Metrics