Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Genome-wide characterization of miRNA and siRNA pathways in the parasitoid wasp Pteromalus puparum
XIAO Shan, FANG Qi, LIU Ming-ming, ZHANG Jiao, WANG Bei-bei, YAN Zhi-chao, WANG Fang, David W. STANLEY, YE Gong-yin
2022, 21 (4): 1106-1115.   DOI: 10.1016/S2095-3119(20)63465-7
Abstract136)      PDF in ScienceDirect      
microRNAs (miRNAs) and small interfering RNAs (siRNAs) are small non-coding RNAs (ncRNAs) that trigger RNA interference (RNAi) in eukaryotic organisms.  The biogenesis pathways for these ncRNAs are well established in Drosophila melanogaster, Aedes aegypti, Bombyx mori and other insects, but lacking in hymenopteran species, particularly in parasitoid wasps.  Pteromalus puparum is a parasitoid of pupal butterflies.  This study identified and analyzed two pathways by interrogating the P. puparum genome.  All core genes of the two pathways are present in the genome as a single copy, except for two genes in the siRNA pathway, R2D2 (two copies) and Argonaute-2 (three).  Conserved domain analyses showed the protein structures in P. puparum were similar to cognate proteins in other insect species.  Phylogenetic analyses of hymenopteran Dicer and Argonaute genes suggested that the siRNA pathway-related genes evolved faster than those in the miRNA pathway.  The study found a decelerated evolution rate of P. puparum Dicer-2 with respect to Dicer-1, which was contrary to other hymenopterans.  Expression analyses revealed high mRNA levels for all miRNA pathway genes in P. puparum adults and the siRNA related genes were expressed in different patterns.  The findings add valuable new knowledge of the miRNA and siRNA pathways and their regulatory actions in parasitoid wasps.
Reference | Related Articles | Metrics
Quantification and prediction of enteric methane emissions from Chinese lactating Holstein dairy cows fed diets with different dietary neutral detergent fiber/non-fibrous carbohydrate (NDF/NFC) ratios
DONG Li-feng, JIA Peng, LI Bin-chang, WANG Bei, YANG Chun-lei, LIU Zhi-hao, DIAO Qi-yu
2022, 21 (3): 797-811.   DOI: 10.1016/S2095-3119(21)63825-X
Abstract317)      PDF in ScienceDirect      
Methane (CH4) emissions from ruminant production are a significant source of anthropogenic greenhouse gas production, but few studies have examined the enteric CH4 emissions of lactating dairy cows under different feeding regimes in China.  This study aimed to investigate the influence of different dietary neutral detergent fiber/non-fibrous carbohydrate (NDF/NFC) ratios on production performance, nutrient digestibility, and CH4 emissions for Holstein dairy cows at various stages of lactation. It evaluated the performance of CH4 prediction equations developed using local dietary and milk production variables compared to previously published prediction equations developed in other production regimes.  For this purpose, 36 lactating cows were assigned to one of three treatments with differing dietary NDF/NFC ratios: low (NDF/NFC=1.19), medium (NDF/NFC=1.54), and high (NDF/NFC=1.68).  A modified acid-insoluble ash method was used to determine nutrient digestibility, while the sulfur hexafluoride technique was used to measure enteric CH4 emissions.  The results showed that the dry matter (DM) intake of cows at the early, middle, and late stages of lactation decreased significantly (P<0.01) from 20.9 to 15.4 kg d–1, 15.3 to 11.6 kg d–1, and 16.4 to 15.0 kg d–1, respectively, as dietary NDF/NFC ratios increased.  Across all three treatments, DM and gross energy (GE) digestibility values were the highest (P<0.05) for cows at the middle and late lactation stages.  Daily CH4 emissions increased linearly (P<0.05), from 325.2 to 391.9 kg d–1, 261.0 to 399.8 kg d–1, and 241.8 to 390.6 kg d–1, respectively, as dietary NDF/NFC ratios increased during the early, middle, and late stages of lactation.  CH4 emissions expressed per unit of metabolic body weight, DM intake, NDF intake, or fat-corrected milk yield increased with increasing dietary NDF/NFC ratios.  In addition, CH4 emissions expressed per unit of GE intake increased significantly (P<0.05), from 4.87 to 8.12%, 5.16 to 9.25%, and 5.06 to 8.17% respectively, as dietary NDF/NFC ratios increased during the early, middle, and late lactation stages.  The modelling results showed that the equation using DM intake as the single variable yielded a greater R2 than equations using other dietary or milk production variables.  When data obtained from each lactation stage were combined, DM intake remained a better predictor of CH4 emissions (R2=0.786, P=0.026) than any other variables tested.  Compared to the prediction equations developed herein, previously published equations had a greater root mean square prediction error, reflecting their inability to predict CH4 emissions for Chinese Holstein dairy cows accurately.  The quantification of CH4 production by lactating dairy cows under Chinese production systems and the development of associated prediction equations will help  establish regional or national CH4 inventories and improve mitigation approaches to dairy production.

Reference | Related Articles | Metrics
Response of leaf stomatal and mesophyll conductance to abiotic stress factors
LI Sheng-lan, TAN Ting-ting, FAN Yuan-fang, Muhammad Ali RAZA, WANG Zhong-lin, WANG Bei-bei, ZHANG Jia-wei, TAN Xian-ming, CHEN Ping, Iram SHAFIQ, YANG Wen-yu, YANG Feng
2022, 21 (10): 2787-2804.   DOI: 10.1016/j.jia.2022.07.036
Abstract264)      PDF in ScienceDirect      

Plant photosynthesis assimilates CO2 from the atmosphere, and CO2 diffusion efficiency is mainly constrained by stomatal and mesophyll resistance.  The stomatal and mesophyll conductance of plants are sensitive to abiotic stress factors, which affect the CO2 concentrations at carboxylation sites to control photosynthetic rates.  Early studies conducted relevant reviews on the responses of stomatal conductance to the environment and the limitations of mesophyll conductance by internal structure and biochemical factors.  However, reviews on the abiotic stress factors that systematically regulate plant CO2 diffusion are rare.  Therefore, in this review, the rapid and long-term responses of stomatal and mesophyll conductance to abiotic stress factors (such as light intensity, drought, CO2 concentration and temperature) and their physiological mechanisms are summarized.  Finally, future research trends are also investigated.

Reference | Related Articles | Metrics