Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effects of carcass weight, sex and breed composition on meat cuts and carcass trait in finishing pigs
XIE Lei, QIN Jiang-tao, RAO Lin, CUI Deng-shuai, TANG Xi, XIAO Shi-jun, ZHANG Zhi-yan, HUANG Lu-sheng
2023, 22 (5): 1489-1501.   DOI: 10.1016/j.jia.2022.08.122
Abstract267)      PDF in ScienceDirect      

Pork cutting is a very important processing in promoting economic appreciation across the swine business chain.  The goal of this research is to determine the proportion and weight of meat cuts, as well as to analyze the effects of carcass weight, sex and breed composition on meat cuts.  Simultaneously, we investigate the correlation between meat cuts, carcass traits and meat quality traits.  To assess 17 meat cut traits, 12 carcass traits and 6 meat quality traits, we sample 2 012 pigs from four breeds, including Landrace (LD), Yorkshire (YK), Landrace Yorkshire (LY), and Duroc Landrace Yorkshire (DLY).  The results showed that carcass weight, sex and breed composition have significant effects on the weight and proportion of most meat cuts.  The proportion of cuts for muscle and bone decrease as carcass weight grows, whereas the proportion of cuts for fat increases.  Moreover, the thickness of four-point backfat was significantly increasing (P<0.001) with increase of carcass weights, indicating that large amount of intaking energy in the late finishing stage was used for fat deposition.  Besides, the proportion of Shoulder cut (SC) and Back fat (BF) in barrows was significantly higher (P<0.001) than that in sows, whereas the Leg cut (LC) showed the opposite trend.  The Loin (LO) proportion and Loin muscle area (LMA) of barrows were significantly lower (P<0.001), but the proportion of fat areas in the image (PFAI) and visual marbling score (VMS) were significantly higher (P<0.001) than those of sows, respectively.  In terms of breeds, LD had the longest straight carcass length, significantly longer (P<0.001) than the other three breeds, which partially explains why LD had the largest proportion of the Middle cut (MC).  Moreover, the proportion of SC in DLY was the highest.  Last but not least, the correlations between the proportions of most meat cuts, and also between meat cuts and meat quality or carcass traits were low or not significant (P>0.05).  The effects of carcass weight, sex and breed composition on the meat cuts, meat quality and carcass traits are breed and growth stage dependent.  It also reflects the asynchrony of the growth curve between different sexes.  Our results laid an important foundation for breeding pig carcass cuts and composition.

Reference | Related Articles | Metrics
Pseudomonas sp. TK35-L enhances tobacco root development and growth by inducing HRGPnt3 expression in plant lateral root formation
CAO Yuan-yuan, NI Hai-ting, LI Ting, LAY Khien-duc, LIU Dai-song, HE Xiang-yi, OU Kang-miao, TANG Xin-yun, WANG Xiao-bo, Qiu Li-juan
2020, 19 (10): 2549-2560.   DOI: 10.1016/S2095-3119(20)63266-X
Abstract140)      PDF in ScienceDirect      
Rhizosphere colonization is a key requirement for the application of plant growth-promoting rhizobacteria (PGPR) as a biofertilizer.  Signaling molecules are often exchanged between PGPR and plants, and genes in plants may respond to the action of PGPR.  Here, the luciferase luxAB gene was electrotransformed into Pseudomonas sp. strain TK35, a PGPR with an affinity for tobacco, and the labelled TK35 (TK35-L) was used to monitor colonization dynamics in the tobacco rhizosphere and evaluate the effects of colonization on tobacco growth and root development.  The transcript levels of the hydroxyproline-rich glycoprotein HRGPnt3 gene, a lateral root induction indicator, in tobacco roots were examined by qPCR.  The results showed that TK35-L could survive for long periods in the tobacco rhizosphere and colonize new spaces in the tobacco rhizosphere following tobacco root extension, exhibiting significant increases in root development, seedling growth and potassium accumulation in tobacco plants.  The upregulation of HRGPnt3 transcription in the inoculated tobacco suggested that TK35-L can promote tobacco root development by upregulating the transcript levels of the HRGPnt3 gene, which promotes tobacco seedling growth.  These findings lay a foundation for future studies on the molecular mechanism underlying the plant growth-promoting activities of PGPR.  Furthermore, this work provided an ideal potential strain for biofertilizer production.
Reference | Related Articles | Metrics
Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain
LI Xiang-ling, GUO Li-guo, ZHOU Bao-yuan, TANG Xiang-ming, CHEN Cong-cong, ZHANG Lei, ZHANG Shao-yun, LI Chong-feng, XIAO Kai, DONG Wei-xin, YIN Bao-zhong, ZHANG Yue-chen
2019, 18 (9): 2141-2152.   DOI: 10.1016/S2095-3119(19)62597-9
Abstract144)      PDF in ScienceDirect      
Over-use of N fertilizer in crop production has resulted in a series of environmental problems in the North China Plain (NCP).  Thus, improvement of nitrogen use efficiency (NUE) in summer maize has become an effective strategy for promoting sustainable agriculture in this region.  Using twenty maize cultivars, plant dry matter production, N absorption and accumulation, yield formation, and NUE in summer maize were investigated under three N levels in two growing seasons.  Based on their yield and yield components, these maize cultivars were categorized into four groups including efficient-efficient (EE) cultivars, high-nitrogen efficient (HNE) cultivars, low-nitrogen efficient (LNE) cultivars and nonefficient-nonefficient (NN) cultivars.  In both two seasons, the EE cultivars improved grain yield together with increased plant biomass, and enhanced accumulative amounts as well as higher average grain yields than the other cultivar groups under deficient-N conditions.  Significant correlations were observed between yield and kernel numbers (KN), dry matter (DM) amount and N accumulation at both post-silking and maturity stages.  DM and N accumulation at late growth stage (i.e., from silking to maturity) contributed largely to the enhanced yield capacity and improved NUE under N-deficient conditions.  Compared with the NN cultivars, the EE cultivars also showed increased N assimilation amount (NAA) and N remobilization content (NRC), and elevated N remobilization efficiency (NRE), NUE and nitrogen partial factor productivity (PFPN).  Our investigation has revealed N-associated physiological processes and may provide guidance for cultivation and breeding of high yield and NUE summer maize under limited N conditions in the NCP.
Reference | Related Articles | Metrics
miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene  
WENG Bo, RAN Mao-liang, Cao Rong, PENG Fu-zhi, LUO Hui, GAO Hu, TANG Xiang-wei, Yang An-qi, CHEN Bin
2019, 18 (8): 1924-1935.   DOI: 10.1016/S2095-3119(19)62564-5
Abstract160)      PDF in ScienceDirect      
MicroRNAs (miRNAs) have been widely identified in porcine testicular tissues and implicated as crucial regulators of proliferation, apoptosis, and differentiation in porcine spermatogenesis related cells.  However, the function roles of most of the miRNAs that have been identified in Sertoli cells are poorly understood.  In the present study, six experiments were conducted to study the regulatory role of miR-10b in porcine immature Sertoli cells.  In experiment 1, the results showed that the relative mRNA expression level of miR-10b in porcine testicular tissues decreased quadratically (P<0.001) with increasing age, while the relative mRNA expression level of DAZAP1 gene increased (P<0.001).  In addition, the mRNA expression of miR-10b was negatively (P<0.01) correlated with DAZAP1 mRNA expression (r=–0.550).  In experiment 2, the results from the bioinformatic analysis and a luciferase reporter assay demonstrated that miR-10b directly targeted the DAZAP1 gene in porcine immature Sertoli cells.  DAZAP1 mRNA and protein expressions were both regulated (P<0.05) by miR-10b.  In experiments 3 to 5, the over-expression of miR-10b or the siRNA-mediated knockdown of the DAZAP1 gene promoted (P<0.05) porcine immature Sertoli cell proliferation, as determined by the Cell Counting Kit-8 (CCK-8) assay and the 5-Ethynyl-2´-deoxyuridine (EdU) assay.  However, an annexin V-FITC/PI staining assay and the expression of cell survival-related genes indicated that over-expression of miR-10b or knockdown of DAZAP1 had no effect (P>0.05) on porcine immature Sertoli cell apoptosis.  In experiment 6, the co-transfection treatment results showed that miR-10b promoted (P<0.05) porcine immature Sertoli cell proliferation by targeting DAZAP1 gene.  Overall, these experiments demonstrated that miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene.
Reference | Related Articles | Metrics
Low soil temperature and drought stress conditions at flowering stage affect physiology and pollen traits of rice
RAO Gang-shun, Umair Ashraf, KONG Lei-lei, MO Zhao-wen, XIAO Li-zhong, ZHONG Ke-you, Fahd Rasul, TANG Xiang-ru
2019, 18 (8): 1859-1870.   DOI: 10.1016/S2095-3119(18)62067-2
Abstract138)      PDF in ScienceDirect      
Low temperature and drought stress are the major constraints in rice productivity worldwide.  This study investigated the influence of low soil temperature and/or drought stress on physiology and pollen traits of two rice genotypes viz., Guinongzhan and Yueza 763 at flowering stage.  The experiment included four treatments, i.e., under the greenhouse natural growth conditions (UC) taken as control, drought stress (DS), the soil water potential was kept at −0.035 to −0.045 MPa (DS), low soil temperature (LT) maintained at 19 to 21°C, combined LT and DS (LT+DS, LD).  Results showed that LT, DS, and LD substantially reduced net photosynthetic rate (Pn) and the maximal photochemical efficiency of PSII (Fv/Fm), whilst transpiration rate (Tr) was markedly enhanced by under LT in both rice genotypes.  The malondialdehyde (MDA) contents were enhanced under LT, DS, and LD in Guinongzhan, whilst the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were regulated by LT, DS, and LD in both rice genotypes.  Furthermore, anther dehiscence rate, pollen numbers on stigma, pollen viability and pollen germination rate, and anther starch contents were obviously reduced under LT and DS of both rice genotypes.  Stress conditions substantially reduced the yield and yield components, i.e., effective panicles, seed set percentage, grain/panicles, 1 000-grain weight, and grain yield of both genotypes and the effects were more apparent in Guinongzhan than those in Yueza 763 whilst combined LT and DS proved more damaging than individual stress.
Reference | Related Articles | Metrics
No evidence for an effect of Wolbachia on mtDNA variation and evolution in natural populations of Sesamia inferens (Lepidoptera: Noctuidae)
TANG Xiao-tian, XU Jing, LU Ming-xing, DU Yu-zhou
2019, 18 (5): 1050-1063.   DOI: 10.1016/S2095–3119(18)62019–2
Abstract155)      PDF in ScienceDirect      
Wolbachia are widespread maternally-inherited endosymbiotic bacteria that infect numerous arthropods.  This study represents a thorough survey of the Wolbachia infection patterns in the pink stem borer, Sesamia inferens (Walker), an important rice pest in China, based on nucleotide comparisons for the surface protein (wsp) and cell division protein (ftsZ) genes.  The effects of Wolbachia on mtDNA variation and evolution of S. inferens were also investigated.  Although we identified six genetically diverse strains, we found infections to be infrequent, with only 7.8% of hosts infected, and identified geographical differences in infection rates between southern and northern populations.  Nucleotide indexes (haplotype diversity (Hd), nucleotide diversity (π) and number of variable sites (S) of mtDNA in infected populations were not significantly lower or higher than that in the uninfected populations.  Furthermore, there was no association between Wolbachia infection status and phylogeny of mtDNA haplotypes.  Analysis of molecular variance (AMOVA) showed that significant differentiation mainly existed within groups rather than among the groups.  Additionally, using Tajima’s D and Fu’s F values, the mtDNA genes did not deviate significantly from neutral evolution.  Taken together these results indicate that currently there were no effects of Wolbachia infection on host mtDNA variation and evolution in S. inferens.
Reference | Related Articles | Metrics
Effects of relative humidity on animal health and welfare
XIONG Yan, MENG Qing-shi, GAO Jie, TANG Xiang-fang, ZHANG Hong-fu
2017, 16 (08): 1653-1658.   DOI: 10.1016/S2095-3119(16)61532-0
Abstract1687)      PDF in ScienceDirect      
   Farm animals are sources of meat, milk and eggs for the humans, and animal health ensures the quality and security of these agricultural and sideline products. The animal raising conditions in livestock stations and poultry houses play vital roles in both animal health and production. One of the major factors affecting raising conditions, relative humidity, has not received much attention even though it is important for animal husbandry. In this review, we summarize the impacts of relative humidity on animal health and welfare to draw attention for its importance in the improvement of animal raising conditions in the future.
Reference | Related Articles | Metrics
Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber
HU Li-ping, ZHANG Feng, SONG Shu-hui, TANG Xiao-wei, XU Hui, LIU Guang-min, WANG Ya-qin, HE Hong-ju
2017, 16 (07): 1486-1501.   DOI: 10.1016/S2095-3119(16)61501-0
Abstract969)      PDF in ScienceDirect      
    SWEETs (sugars will eventually be exported transporters) are a novel class of recently identified sugar transporters that play important roles in diverse physiological processes. However, only a few species of the plant SWEET gene family have been functionally identified. Up till now, there has been no systematic analysis of the SWEET gene family in Cucurbitaceae crops. Here, a genome-wide characterization of this family was conducted in cucumber (Cucumis sativus L.). A total of 17 CsSWEET genes were identified, which are not evenly distributed over the seven cucumber chromosomes. Cucumber SWEET protein sequences possess seven conserved domains and two putative serine phosphorylation sites. The phylogenetic tree of the SWEET genes in cucumber, Arabidopsis thaliana, and Oryza sativa was constructed, and all the SWEET genes were divided into four clades. In addition, a number of putative cis-elements were identified in the promoter regions of these CsSWEET genes: nine types involved in phytohormone responses and eight types involved in stress responses. Moreover, the transcript levels of CsSWEET genes were analyzed in various tissues using quantitative real-time polymerase chain reaction. A majority (70.58%) of the CsSWEET genes were confined to reproductive tissue development. Finally, 18 putative watermelon ClaSWEET genes and 18 melon CmSWEET genes were identified that showed a high degree of similarity with CsSWEET genes. The results from this study provided a basic understanding of the CsSWEET genes and may also facilitate future research to elucidate the function of SWEET genes in cucumber and other Cucurbitaceae crops.
Reference | Related Articles | Metrics
Effects of N Management on Yield and N Uptake of Rice in Central China
PANSheng-gang , HUANG Sheng-qi, ZHAI Jing, WANG Jing-ping, CAO Cou-gui, CAI Ming-li, ZHAN Ming , TANG Xiang-ru
2012, 12 (12): 1993-2000.   DOI: 10.1016/S1671-2927(00)8736
Abstract1405)      PDF in ScienceDirect      
Efficient N fertilizer management is critical for the economic production of rice and the long-term protection of environmental quality. A field experiment was designed to study the effects of N fertilizer management practices on grain yield and N uptake of rice. The experiment was laid out in the randomized complete block design with four replications in Central China during 2008 and 2009. Five N treatments denoted as N0, N150A, N150B, N240A, and N240B, respectively, were studied. N0 represented no N application and served as a control, N150A and N150B indicated the total N application of 150 kg N ha-1 but with two different application schedules (A and B) across the early stage of rice growth. Schedule A was applied as follows: 40% basal, 30% at 10 d after transplanting (DAT) and 30% at 36 DAT (nearly at the panicle initiation stage), while schedule B was as follows: 30% at basal, 20% at 10 DAT, and 50% at 36 DAT. Similarly, N240A and N240B indicated the total N application of 240 kg N ha-1 with schedules A and B as described above. To quantify N uptake from fertilizer and soil, a 15N experiment was also conducted within the main experimental field, with micro-plots. Grain yields were significantly increased as N rates increased from 0 to 240 kg N ha-1. At the same rate, splitting N application as schedule B significantly increased the grain yield, spikelets per panicle, percentage of ripened grain, and 1 000-grain weight, compared with the N application according to schedule A. Mean rice recovery of N fertilizer by 15N tracing method ranged from 25.39% at N240A to 34.89% at N150B, however, N fertilizer residual rate in the soil ranged from 12.40% at N240A to 16.61% at N150B. About 31.5 and 28.5% of total uptake of 15N derived from basal fertilizer was absorbed at panicle initiation and heading stages, respectively. However, 65.6-92.5% of total uptake of 15N derived from topdressing fertilizer was absorbed at the heading stage. Based on yield and nitrogen recovery efficiency, splitting N application according to schedule B at the rate of 240 kg N ha-1 will be more profitable among the tested five N treatments in Central China.
Reference | Related Articles | Metrics
Isolation and Expression Patterns of Rice WRKY82 Transcription Factor Gene Responsive to Both Biotic and Abiotic Stresses
PENG Xi-xu, TANG Xin-ke, ZHOU Ping-lan, HU Yao-jun, DENG Xiao-bo, HE Yan and WANG Hai-hua
2011, 10 (6): 893-901.   DOI: 10.1016/S1671-2927(11)60074-6
Abstract3687)      PDF in ScienceDirect      
WRKY transcription factors are involved in the regulation of response to biotic and abiotic stresses in plants. A fulllength cDNA clone of rice WRKY82 gene (OsWRKY82) was isolated from a cDNA library generated from leaves infected by Magnaporthe grisea. OsWRKY82 contained an entire open reading frame in length of 1 701 bp, and was predicted to encode a polypeptide of 566 amino acid residues consisting of two WRKY domains, each with a zinc finger motif of C2H2,belonging to the WRKY subgroup I. OsWRKY82 shared high identity at the amino acid level with those from Sorghum bicolor, Hordeum vulgare, and Zea mays. The transcript level of OsWRKY82 was relatively higher in stems, leaves, and flowers, and less abundant in grains. It was induced by inoculation with M. grisea and Rhizoctonia solani. However, the inducible expression in incompatible rice-M. grisea interactions was earlier and greater than that in compatible interactions.The expression of OsWRKY82 was up-regulated by methyl jasmonate and ethephon, whereas salicylic acid exerted no effects on its expression. Moreover, OsWRKY82 exhibited transcriptional activation ability in yeast. Additionally,OsWRKY82 transcripts could be induced by wounding and heat shocking, but not by abscisic acid, cold, high salinity and dehydration. By contrast, gibberellin suppressed the expression of OsWRKY82. These indicate that OsWRKY82 is a multiply stress-inducible gene responding to both biotic and abiotic stresses, and may be involved in the regulation of defense response to pathogens and tolerance against abiotic stresses by jasmonic acid/ethylene-dependent signaling pathway.
Reference | Related Articles | Metrics