Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Plant-based meat substitutes by high-moisture extrusion: Visualizing the whole process in data systematically from raw material to the products
ZHANG Jin-chuang, MENG Zhen, CHENG Qiong-ling, LI Qi-zhai, ZHANG Yu-jie, LIU Li, SHI Ai-min, WANG Qiang
2022, 21 (8): 2435-2444.   DOI: 10.1016/S2095-3119(21)63892-3
Abstract190)      PDF in ScienceDirect      

High-moisture extrusion technology should be considered one of the best choices for producing plant-based meat substitutes with the rich fibrous structure offered by real animal meat products.  Unfortunately, the extrusion process has been seen as a “black box” with limited information about what occurs inside, causing serious obstacles in developing meat substitutes.  This study designed a high-moisture extrusion process and developed 10 new plant-based meat substitutes comparable to the fibrous structure of real animal meat.  The study used the Feature-Augmented Principal Component Analysis (FA-PCA) method to visualize and understand the whole extrusion process in three ways systematically and accurately.  It established six sets of mathematical models of the high-moisture extrusion process based on 8 000 pieces of data, including five types of parameters.  The FA-PCA method improved the R2 values significantly compared with the PCA method.  The Way 3 was the best to predict product quality (Z), demonstrating that the gradually molecular conformational changes (Yn´) were critical in controlling the final quality of the plant-based meat substitutes.  Moreover, the first visualization platform software for the high-moisture extrusion process has been established to clearly show the “black box” by combining the virtual simulation technology.  Through the software, some practice work such as equipment installation, parameter adjustment, equipment disassembly, and data prediction can be easily achieved.

Reference | Related Articles | Metrics
Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism
ZHAO Zhi-hao, SHI Ai-min, GUO Rui, LIU Hong-zhi, HU Hui, WANG Qiang
2022, 21 (3): 878-891.   DOI: 10.1016/S2095-3119(21)63851-0
Abstract137)      PDF in ScienceDirect      
High-oleic acid peanut oil (HOPO) and extra-virgin olive oil (EVOO) have been reported previously to have an attenuating effect on metabolic syndrome (MS).  This study aimed to evaluate the metabolic effect of HOPO and EVOO supplementation in attenuating MS and the role of gut microbiota in regulating the metabolic profile.  Sprague-Dawley rats were continuously fed with a normal diet, high-fructose and high-fat (HFHF) diet, HFHF diet containing HOPO, or a HFHF diet containing EVOO for 12 weeks.  The metabolomics profiles of feces and serum samples were compared using untargeted metabolomics based on UPLC-Q/TOF-MS.  Partial Least Squares Discriminant Analysis (PLS-DA) was used to identify the potential fecal and serum biomarkers from different groups.  Correlation between gut microbiota and biomarkers was assessed, and pathway analysis of serum biomarkers was conducted.  Differences in metabolic patterns in feces and serum were observed among different groups.  There were 8 and 12 potential biomarkers in feces and 15 and 6 potential biomarkers in serum of HOPO group and EVOO group, respectively, suggesting that HOPO and EVOO supplementation mainly altered amino acids, peptides, and their analogs in feces and serum.  The branched-chain amino acids (BCAAs) biosynthesis pathway was identified as a major pathway regulated by HOPO or EVOO.  This study suggests that HOPO and EVOO supplementation ameliorate diet-induced MS, mainly via modulation of the BCAAs biosynthesis pathway.
Reference | Related Articles | Metrics
Relationship of chemical properties of different peanut varieties to peanut butter storage stability
GONG A-na, SHI Ai-min, LIU Hong-zhi, YU Hong-wei, LIU Li, LIN Wei-jing, WANG Qiang
2018, 17 (05): 1003-1010.   DOI: 10.1016/S2095-3119(18)61919-7
Abstract671)      PDF in ScienceDirect      
This study examined the effect of peanut quality on the storage stability of peanut butter.  The quality of 17 varieties of peanuts was analyzed, and each was used to prepare peanut butter.  For different storage temperatures and durations, stability of the peanut butter was measured according to three indicators: peroxide value, acid value, and centrifugal rate.  The correlation between peanut components and peanut butter storage stability was also investigated.  The results indicated significant differences in fatty acid composition between different varieties of peanut.  Peanut butter prepared with high oleic peanuts (Kainong 17-15) had a significantly longer shelf life than that of other varieties.  The significant correlation between the stability of peanut butter and peanut quality suggests that oleic acid and linoleic acid were the main influencing factors on stability.  This study finds that the high oleic peanuts (HOP) is the most suitable variety for making peanut butter, which can allow farmers and processors to choose the specific variety for better product and shelf life. 
Reference | Related Articles | Metrics
Review on the processing characteristics of cereals and oilseeds and their processing suitability evaluation technology
WANG Qiang, LIU Hong-zhi, SHI Ai-min, HU Hui, LIU Li, WANG Li, YU Hong-wei
2017, 16 (12): 2886-2897.   DOI: 10.1016/S2095-3119(17)61799-4
Abstract709)      PDF (1108KB)(96)      
Cereals and oilseeds are the foundation of human survival which have attracted much attention due to their nutritional and functional properties for maintaining the healthy life.  There are abundant varieties of cereals and oilseeds, however, for a long time, their process suitabilities are still unknown, resulting in the lack of precision processing.  This paper summarized the characteristics of cereals and oilseeds, including sensory, physicochemical and processing qualities, their characteristic fingerprinting and products qualities.  Furthermore, the quality fast detection method was also analyzed.  It also explored the role of mathematical model and the standard evaluation index to determine the process suitability and discussed the opportunity for advanced model capability.  We also prospected on scientific problems for expanding the predictive capabilities for processing suitabilities of these abundant varieties, focusing on the better results and advancements towards the processing of cereals and oilseeds products and improvement of their quality.  
Reference | Related Articles | Metrics