导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((PANG Huan-cheng[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Straw layer burial to alleviate salt stress in silty loam soils: Impacts of straw forms
ZHANG Hong-yuan, LU Chuang, PANG Huan-cheng, LIU Na, ZHANG Xiao-li, LI Yu-yi
2020, 19 (
1
): 265-276. DOI:
10.1016/S2095-3119(19)62737-1
Abstract
(
134
)
PDF in ScienceDirect
Salt stress can be alleviated by straw layer burial in the soil, but little is known of the appropriate form of the straw layer for optimal regulation of soil water and salinity because of the uncontrollability of field tests. Here, the following four straw forms with compaction thickness of 5 cm buried 40–45 deep were studied: no straw layer (CK), segmented straw (SL, 5 cm in length), straw pellet (SK), and straw powder (SF). The three straw forms (SL, SK and SF) significantly delayed the infiltration of irrigation water down the column profile by 71.20–134.3 h relative to CK and the migration velocity of the wetting front under SF was the slowest. It took longer for the wetting front to transcend SK than SL but shorter for it to reach the bottom of soil column after water crossed the straw layer. Compared with CK, the average volumetric water content in the 0–40 cm soil layer increased by 6.45% under SL, 1.77% under SK and 5.39% under SF. The desalination rates at the 0–40 and 0–100 cm soil layers increased by 5.85 and 3.76% under SL, 6.64 and 1.47% under SK and 5.97 and 4.82% under SF. However, there was no significant difference among straw forms in the 0–40 cm soil layer. Furthermore, the salt leaching efficiency (SLE, g mm
–1
h
–1
) above the 40 cm layer under SL was 0.0097, being significantly higher than that under SF (0.0071) by 37.23%. Salt storage under SL, SK and SF in the 40–45 cm layer accounted for 4.50, 16.92 and 7.43% of total storage in the 1-m column profile. Cumulative evaporation under SL and SF decreased significantly by 41.20 and 49.00%, with both treatments having the most significant inhibition of salt accumulation (resalinization rate being 36.06 and 47.15% lower than CK) in the 0–40 cm soil layer. In conclusion, the different forms of straw layers have desalting effects under high irrigation level (446 mm). In particular, SL and SF performed better than SK in promoting deep salt leaching and inhibiting salt accumulation on the soil surface. However, SL was simpler to implement and its SLE was higher. Therefore, the segmented 5 cm straw can be recommended as an optimum physical form for establishing a straw layer for managing saline soils for crop production.
Reference
|
Related Articles
|
Metrics
Select
Subcellular Cd accumulation characteristic in root cell wall of rice cultivars with different sensitivities to Cd stress in soil
LIU Bin, CHEN Li, CHEN Shi-bao, LI Ning, ZHENG Han, JIN Ke, PANG Huan-cheng, MA Yi-bing
2016, 15 (
9
): 2114-2122. DOI:
10.1016/S2095-3119(15)61227-8
Abstract
(
1350
)
PDF in ScienceDirect
The variations of grain cadmiun (Cd) concentrations, translocation factors (TFs) of Cd from roots to shoots/grains of six rice cultivars, characterized with different Cd-sensitivities in polluted soil were studied, the selected rice cultivars were Xiangzao 17 (R1), Jiayu 211 (R2), Xiangzao 42 (R3), Zhuliangyou 312 (R4), Zhuliangyou 611 (R5), and Jinyou 463 (R6), respectively. The Cd subcellular distribution and Cd binding characteristics on subcellular fractions of rice root cell wall (CW) were further investigated. The results showed that the rice grain Cd contents varied significantly, with a maximum variation of 47.0% among the cultivars, the largest grain Cd content was observed with cultivar R1 (Cd-sensitivity cultivar) and the smallest with R5 (Cd-tolerance cultivar). The translocation factors of Cd from roots to shoots (TF
shoot
) and roots to grains (TF
grain
) varied greatly among the cultivars. In general, the TF
grain
of the cultivars followed the order of R1>R2>R3>R4> R6-R5. The Cd concentration (mg kg
–1
FW) in the fraction of root CW, the fraction of cell wall removing pectin (CW-P) and the fraction of cell wall removing pectin and hemicellulose (CW-P-HC) of the cultivars generally followed the order of CW-P>CW>CW-P-HC; the ratios of Cd concentration (mg kg
–1
FW) in the fraction of CW-P to that of CW were mostly more than 1.10, while the ratios of Cd concentration in the fraction of CW-P-HC to that of CW were mostly less than 0.60, indicating that Cd was mainly stored in the hemicellulose of the root CW. The ratios of Cd of CW-P-HC to CW generally followed the descending order of R1~R2>R3>R4>R5~R6 for the cultivars, which implied that hemicellulose is probably the main subcellular pool for transferring Cd into rice grain, and it restrains the translocation of Cd from shoot to the grain, especially for the Cd-tolerance cultivars (R5 and R6), the compartmentation of more Cd in hemicellulose in root CW is probably one of the main mechanisms for Cd tolerance of rice cultivars.
Reference
|
Related Articles
|
Metrics
Select
Buried straw layer and plastic mulching increase microflora diversity in salinized soil
LI Yu-yi, PANG Huan-cheng, HAN Xiu-fang, YAN Shou-wei, ZHAO Yong-gan, WANG Jing, ZHAI Zhen, ZHANG Jian-li
2016, 15 (
7
): 1602-1611. DOI:
10.1016/S2095-3119(15)61242-4
Abstract
(
1985
)
PDF in ScienceDirect
Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was alleviated and crop productivity was improved remarkably by straw layer burial plus plastic film mulching in a saline soil. However, its impact on the microflora diversity is not well documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tillage methods: (i) deep tillage with plastic film mulching (CK), (ii) straw layer burial at 40 cm (S), (iii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic film mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial community structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tillage methods. Soil temperature had significant positive correlations with the number of bacteria, actinomyces and fungi (
P
<0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a significant negative correlation with the number of microbers, especially for bacteria and fungi (
P
<0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands followed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in all soil samples were Firmicutes, Proteobacteria and Actinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic film mulching could be a practical option for alleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.
Reference
|
Related Articles
|
Metrics