Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Optimizing water management practice to increase potato yield and water use efficiency in North China
LI Yang, WANG Jing, FANG Quan-xiao, HU Qi, HUANG Ming-xia, CHEN Ren-wei, ZHANG Jun, HUANG Bin-xiang, PAN Zhi-hua, PAN Xue-biao
2023, 22 (10): 3182-3192.   DOI: 10.1016/j.jia.2023.04.027
Abstract141)      PDF in ScienceDirect      

Potato is one of the staple food crops in North China.  However, potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation.  Increasing yield and water use efficiency (WUE) of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China.  However, the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region.  Based on meta-analysis of field experiments from the literature and model simulation, this study quantified the potential yields of potatoes without water and fertilizer limitation, and yield under irrigated and rainfed conditions, and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains (DH), the Foothills of Yanshan hilly (YH), the North foot of the Yinshan Mountains (YM), and the Loess Plateau (LP) in North China.  Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha–1 for the YH region, 11.4 t ha–1 for the YM region, 11.2 t ha–1 for the DH region, and 10.7 t ha–1 for the LP region, respectively.  Observed rainfed potato tuber dry weight yield accounted for 61, 30, 28 and 24% of the potential yield in the DH, YH, YM, and LP regions.  The maximum WUE of 2.2 kg m–3 in the YH region, 2.1 kg m–3 in the DH region, 1.9 kg m–3 in the YM region and 1.9 kg m–3 in the LP region was achieved under the potential yield level.  Ridge-furrow planting could boost yield by 8–49% and WUE by 2–36% while ridge-furrow planting with film mulching could boost yield by 35–89% and WUE by 7–57% across North China.  Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources.

Reference | Related Articles | Metrics
Fine mapping of a novel wax crystal-sparse leaf3 gene in rice
GONG Hong-bing, ZENG Sheng-yuan, XUE Xiang, ZHANG Ya-fang, CHEN Zong-xiang, ZUO Shi-min, LI Chuang, LIN Tian-zi, JING De-dao, YU Bo, QIAN Hua-fei, PAN Xue-biao, SHENG Sheng-lan
2017, 16 (02): 497-502.   DOI: 10.1016/S2095-3119(16)61470-3
Abstract985)      PDF in ScienceDirect      
Cuticular wax plays an important role in protecting plants against water loss and pathogen infection and in the adaptations to environmental stresses.  The genetic mechanism of the biosynthesis and accumulation of epicuticular wax in rice remains largely unknown.  Here, we show a spontaneous mutant displaying wax crystal-sparse leaves and decreased content of epicuticular wax that was derived from the cytoplasmic male sterility (CMS) restorer line Zhenhui 714.  Compared with the wild type Zhenhui 714, the mutant exhibited hydrophilic features on leaf surface and more sensitivity to drought stress.  The mutation also caused lower grain number per panicle and thousand grain weight, leading to the decline of yield.  Genetic analysis indicates that the mutation is controlled by a single recessive gene, named wax crystal-sparse leaf3 (wsl3).  Using segregation populations derived from crosses of mutant/Zhendao 88 and mutant/Wuyujing 3, respectively, the wsl3 gene was fine-mapped to a 110-kb region between markers c3-16 and c3-22 on chromosome 3.  According to the rice reference genome and gene analysis, we conclude that a novel gene/mechanism involved in regulation of rice cuticular wax formation.
Reference | Related Articles | Metrics