Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae
Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie
2024, 23 (10): 3328-3342.   DOI: 10.1016/j.jia.2023.07.022
Abstract120)      PDF in ScienceDirect      
Verticillium dahliae causes significant losses in cotton production.  To reveal the mechanism of the defense response to V. dahliae in cotton, transcriptomic analyses were performed using cotton cultivars M138 (V. dahliae-resistant) and P2 (V. dahliae-susceptible).  The results revealed 11,076 and 6,640 differentially expressed genes (DEGs) in response to V. dahliae, respectively.  The weighted gene co-expression network analysis of 4,633 transcription factors (TFs) indicated a “MEblue” module containing 654 TFs that strongly correlate with resistance to V. dahliae.  Among these TFs, the ethylene response factor Ghi_A05G10166 (GhERF91) was identified as a putative hub gene with a defense response against V. dahliae.  A virus-induced gene silencing assay and exogenous application of ethephon showed that GhERF91 is activated by ethylene and positively regulates the response to V. dahliae exposure in cotton.  This study provides fundamental transcriptome data and a putative causal gene (GhERF91) associated with resistance to V. dahliae, as well as genetic resources for breeding V. dahliae-resistant cotton.


Reference | Related Articles | Metrics
Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton
TIAN Xiao-min, HAN Peng, WANG Jing, SHAO Pan-xia, AN Qiu-shuang, Nurimanguli AINI, YANG Qing-yong, YOU Chun-yuan, LIN Hai-rong, ZHU Long-fu, PAN Zhen-yuan, NIE Xin-hui
2023, 22 (5): 1324-1337.   DOI: 10.1016/j.jia.2022.08.034
Abstract398)      PDF in ScienceDirect      

Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection.  Thus, understanding resistance genes against pathogens in plants depends on a genetic analysis of lignin response.  In the study, eight upland cotton lines were used to construct a multi-parent advanced generation intercross (MAGIC) population (n=280), which exhibited peculiar characteristics from the convergence of various alleles coding for advantageous traits.  To measure the lignin response to Verticillium wilt (LRVW), artificial disease nursery (ADN) and rotation nursery (RN) were prepared for MAGIC population planting in four environments.  The stem lignin contents were collected, and the LRVW was measured with the lignin value of ADN/RN in each environment, which showed great variation.  A total of 9323 high-quality single-nucleotide polymorphism (SNP) markers obtained from the Cotton-SNP63K array were employed for genotyping the MAGIC population.  The SNPs were distributed through the whole genome with 4.78 SNP/Mb density, ranging from 1.14 (ChrA06) to 10.08 (ChrD08).  A genome-wide association study was performed using a mixed linear model (MLM) for LRVW, and three stable quantitative trait loci (QTLs), qLRVW-A04, qLRVW-A10 and qLRVW-D05, were identified in more than two environments.  Two key candidate genes, Ghi_D05G01046 and Ghi_D05G01221, were selected within the QTLs through the combination of variations in the coding sequence, induced expression patterns, and function annotations, both of which presented nonsynonymous mutations in coding regions and were strongly induced by Verticillium dahliae. Ghi_D05G01046 encodes a leucine-rich extensin (LRx) protein, which is involved in Arabidopsis cell wall biosynthesis and organization.  Ghi_D05G01221 encodes a transcriptional co-repressor novel interactor of jaz (NINJA), which functions in the jasmonic acid (JA) signaling pathway.  In summary, the study creates valuable genetic resources for breeding and QTL mapping and opens up a new perspective to uncover the genetic basis of VW resistance in upland cotton.

Reference | Related Articles | Metrics