Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Cotton maturity and responses to harvest aids following chemical topping with mepiquat chloride during bloom period
QI Hai-kun, DU Ming-wei, MENG Lu, XIE Liu-wei, A. Egrinya ENEJI, XU Dong-yong, TIAN Xiao-li, LI Zhao-hu
2022, 21 (9): 2577-2587.   DOI: 10.1016/j.jia.2022.07.008
Abstract239)      PDF in ScienceDirect      

Early maturity, complete defoliation and boll opening are essential for the efficient machine harvesting of cotton.  Chemical topping, involving one extra application of mepiquat chloride (MC) in addition to its traditional multiple-application strategy, may be able to replace manual topping.  However, it is not known whether this chemical topping technique will influence maturity or cotton responses to harvest aids.  In this 2-yr field study, we determined the effects of the timing of chemical topping using various rates of MC on boll opening percentage (BOP) before application of harvest aids (50% thidiazuron·ethephon suspension concentrate, referred to as TE), and the defoliation percentage (DP) and BOP 14 days after TE application.  The results indicated that late chemical topping (near the physiological cutout, when the nodes above white flower is equal to 5.0) significantly decreased BOP before TE by 5.9–11.2% compared with early (at peak bloom) or middle (seven days after peak bloom) treatments in 2019, which was a relatively normal year based on crop condition.  Also, a high MC rate (270 g ha–1) showed a significantly lower (22.0%) BOP before TE than low (90 g ha–1) or medium (180 g ha–1) rates.  In 2020, which was characterized by stronger vegetative growth in the late season, the late chemical topping reduced the number of leaves before TE application relative to early or middle treatments, but had lower DP (23.2–27.2%) 14 days after TE application.  The high MC rate showed a leaf count before TE application that was similar to the low and medium rates, but it showed the most leaves after TE and much lower (15.0–21.7%) DP in 2020.  These results suggest that late timing of chemical topping and a high MC rate decreased the sensitivity of leaves to harvest aids.  Further analysis indicated that the late chemical topping mainly affected the leaf drop from the mainstem and fruiting branches where the late regrowth occurred, and the high MC rate reduced leaf shedding from these parts and also from the vegetative branches.  In conclusion, chemical topping with MC during the bloom period affected cotton maturity and responses to harvest aids in different ways according to the crop condition.  To avoid the risks of delayed maturity and poor defoliation after the application of harvest aids, chemical topping should not be performed too late (i.e., near the physiological cutout) by using MC at more than 180 g ha–1.  The optimum timing of chemical topping probably varies from peak bloom to around seven days later, and the safest MC rates for chemical topping should be less than 180 g ha–1.

Reference | Related Articles | Metrics
Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain
MENG Lu, ZHANG Li-zhen, QI Hai-kun, DU Ming-wei, ZUO Yan-li, ZHANG Ming-cai, TIAN Xiao-li, LI Zhao-hu
2021, 20 (11): 2892-2899.   DOI: 10.1016/S2095-3119(20)63280-4
Abstract147)      PDF in ScienceDirect      
Defoliation is an indispensable step in cotton production with mechanical harvesting, especially in the North China Plain (NCP) where mechanical harvesting is limited by a large proportion of green leaves and unopened bolls at harvest time due to insufficient thermal resources.  It is essential to quantify the optimal use of defoliation products while minimizing yield and quality loss in China.  The objective of this study was to test the effect of a new defoliant Xinsaili (XSL, a compound of 10% thidiazuron and 40% ethephon) on the spatial distribution of cotton leaves and bolls, yield and quality in the NCP.  There were four treatments: XSL 1 800 mL ha–1 , XSL 2 700 mL ha–1, XSL splitted into two equal applications (1 350 mL ha–1 for each), and XSL-free (water) control.  Field experiments were conducted in Hebei, China in 2016–2017.  All the defoliant treatments did not significantly affect cotton yield and fiber quality compared with the water control.  At harvest time, the rate of open bolls under XSL 2 700 mL ha–1 was 13.5% higher than that under XSL-free control, while the other two treatments showed no significant difference, across the two years.  Defoliation percentage of the three XSL treatments showed no difference, but they were on average 42.2% higher than that of XSL-free control.  The year-round effect of the defoliant XSL was significant, indicating that climate factors would affect its application.  It was concluded that the optimal dose of XSL in the NCP was 2 700 mL ha–1, and it was unnecessary to split it into two applications.  These results would promote cotton mechanical harvesting and reduce the labor cost of cotton production in China.
Reference | Related Articles | Metrics
Radiation use efficiency of maize under high-density optimal growth conditions in Jilin Province, China
E Li, Zhijuan Liu, Xiaomao Lin, Tao Li, Dengyu Shi, Huazhe Shang, Suliang Qiao, Guangxin Zhu, Wanrong Yang, Zhenzhen Fu, Jingjin Gong, Wanghua Yang, Zhenkang Yang, Xiaomeng Lu, Jingjing Wang, Lexuan Wang, Jin Zhao, Chuang Zhao, Xiaoguang Yang
DOI: 10.1016/j.jia.2025.04.016 Online: 22 April 2025
Abstract4)      PDF in ScienceDirect      

To evaluate the impact of climate change on maize production, it is critical to accurately measure the radiation use efficiency (RUE) for maize. In this study, we focused on three maize cultivars in Jilin Province, China: Zhengdan 958 (ZD958), Xianyu 335 (XY335), and Liangyu 99 (LY99).  Under the optimal growing conditions for high density (9 plants m-2), we investigated the maize RUE during the vegetative and reproductive phases, and the entire growth period.  The results showed that the canopy light interception for maize peaked during anthesis.  After anthesis, maize plant biomass continued to accumulate.  Based on the absorbed photosynthetically active radiation (APAR), we calculated maize RUE.  During the entire growth period, maize RUE averaged 5.71 g MJ-1 APAR among the three cultivars, with a high-to-low order of ZD958 (5.85 g MJ-1 APAR)>XY335 (5.64 g MJ-1 APAR)>LY99 (5.07 g MJ-1 APAR).  Within the vegetative and reproductive growth periods, maize RUE averaged 6.85 and 5.64 g MJ-1 APAR, respectively.  When utilizing maize models, such as APSIM, that depend on radiation use efficiency (RUE) to predict aboveground biomass accumulation, we observed that the current RUE value of 3.6 g MJ-1 APAR is considerably lower than the measured value obtained under high-density optimal growing conditions.  Consequently, to derive the optimal potential yield for maize in such planting conditions, we recommend adjusting the RUE to a range of 5.07-5.85 g MJ-1 APAR.

Reference | Related Articles | Metrics