Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Plant regeneration via protoplast electrofusion in cassava
WEN Feng, SU Wen-pan, ZHENG Hua, YU Ben-chi, MA Zeng-feng, ZHANG Peng, GUO Wen-wu
2020, 19 (3): 632-642.   DOI: 10.1016/S2095-3119(19)62711-5
Abstract142)      PDF in ScienceDirect      
Protoplast electrofusion between callus protoplasts of cultivar TMS60444 and mesophyll protoplasts of cultivar SC8 was performed as an approach for the genetic improvement of cassava. The fusion products were subsequently cultured in protoplast culture medium (TM2G) with gradual dilution for approximately 1–2 months.  Then the protoplast-derived compact calli were transferred to suspension culture medium (SH) for suspension culture.  The cultured products developed successively into embryos, mature embryos, and shoots on somatic embryo emerging medium (MSN), embryo maturation medium (CMM), and shoot elongation medium (CEM), respectively.  And the shoots were then rooted on Murashige and Skoog (1962) medium (MS).  Sixty-six cell lines were obtained and 12 of them developed into plantlets.  Based on assessment of ploidy level and chromosome counting, four of these plantlets were tetraploid and the remaining eight were diploid.  Based on assessment of ploidy level and simple sequence repeat (SSR) analysis, nine tetraploid cell lines, one diploid variant plant line and nine variant cell lines were obtained.  The diploid variant plant line and the nine variant cell lines all showed partial loss of genetic material compared to that of the parent TMS60444, based on SSR patterns.  These results showed that some new germplasm of cassava were created.  In this study, a protocol for protoplast electrofusion was developed and validated.  Another important conclusion from this work is the confirmation of a viable protocol for the regeneration of plants from cassava protoplasts.  Going forward, we hope to provide technical guidance for cassava tissue culture, and also provide some useful inspiration and reference for further genetic improvement of cassava.
 
Reference | Related Articles | Metrics
Identification of a Resistance Gene bls1 to Bacterial Leaf Streak in Wild Rice Oryza rufipogon Griff.
HE Wen-ai, HUANG Da-hui, LI Rong-bai, YANG Hai-ning, HUANG Yue-yue, LIU Chi, MA Zeng-feng, YANG Yong
2012, 12 (6): 962-969.   DOI: 10.1016/S1671-2927(00)8619
Abstract1804)      PDF in ScienceDirect      
Bacterial leaf streak (BLS) of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a worldwide destructive disease. Development of resistant varieties is considered to be one of the most effective and eco-friendly ways to control the disease. However, only a few genes/QTLs having resistance to BLS have been identified in rice until now. In the present study, we have identified and primarily mapped a BLS-resistance gene, bls1, from a rice line DP3, derived from the wild rice species Oryza rufipogon Griff. A BC2F2 (9311/DP3//9311) population was constructed to map BLS-resistance gene in the rice line DP3. The segregation of the resistant and susceptible plants in BC2F2 in 1:3 ratio (χ2=0.009, χ2 0.05, 1=3.84, P>0.05), suggested that a recessive gene confers BLS resistance in DP3. In bulked segregant analysis (BSA), two SSR markers RM8116 and RM584 were identified to be polymorphic in resistant and susceptible DNA bulks. For further mapping the resistance gene, six polymorphic markers around the target region were applied to analyze the genotypes of the BC2F2 individuals. As a result, the BLS-resistant gene, designated as bls1, was mapped in a 4.0-cM region flanked by RM587 and RM510 on chromosome 6.
Reference | Related Articles | Metrics