Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
StOFP20 regulates tuber shape and interacts with TONNEAU1 Recruiting Motif proteins in potato
AI Ju, WANG Ye, YAN Ya-wen, LI Chen-xiao, LUO Wei, MA Ling, SHANG Yi, GAO Dong-li
2023, 22 (3): 752-761.   DOI: 10.1016/j.jia.2022.08.069
Abstract374)      PDF in ScienceDirect      

The OVATE family proteins (OFPs) are plant-specific proteins that modulate diverse aspects of plant growth and development.  In tomato, OFP20 has been shown to interact with TONNEAU1 Recruiting Motif (TRM) proteins to regulate fruit shape.  In this study, we demonstrated that the mutation of StOFP20 caused a shift from round to oval shaped tubers in a diploid accession C151, supporting the role of StOFP20 in controlling tuber shape.  Its expression reached a maximum in the tuber initiation stage and then decreased as the tuber develops.  To help elucidate the mechanism of tuber shape regulation by StOFP20, 27 TONNEAU1 Recruiting Motif (TRM) proteins were identified and 23 of them were successfully amplified in C151.  A yeast two-hybrid assay identified three TRM proteins that interacted with StOFP20, which was confirmed by firefly luciferase complementation in tobacco leaves.  The OVATE domain was indispensable for the interactions, while the necessity of the M10 motif in TRM proteins varied among the interactions between StOFP20 and the three TRMs.  In summary, both StOFP20 and SlOFP20 directed interactions with TRM proteins, but the corresponding interactants were not completely consistent, implying that they exert regulatory roles through mechanisms that are only partially overlapping.  

Reference | Related Articles | Metrics
YGL9, encoding the putative chloroplast signal recognition particle 43 kDa protein in rice, is involved in chloroplast development
WANG Zhong-wei, ZHANG Tian-quan, XING Ya-di, ZENG Xiao-qin, WANG Ling, LIU Zhong-xian, SHI Jun-qiong, ZHU Xiao-yan, MA Ling, LI Yun-feng, LING Ying-hua, SANG Xian-chun, HE Guang-hua
2016, 15 (05): 944-953.   DOI: 10.1016/S2095-3119(15)61310-7
Abstract1656)      PDF in ScienceDirect      
    The nuclear-encoded light-harvesting chlorophyll a/b-binding proteins (LHCPs) are specifically translocated from the stroma into the thylakoid membrane through the chloroplast signal recognition particle (cpSRP) pathway. The cpSRP is composed of a cpSRP43 protein and a cpSRP54 protein, and it forms a soluble transit complex with LHCP in the chloroplast stroma. Here, we identified the YGL9 gene that is predicted to encode the probable rice cpSRP43 protein from a rice yellow-green leaf mutant. A phylogenetic tree showed that an important conserved protein family, cpSRP43, is present in almost all green photosynthetic organisms such as higher plants and green algae. Sequence analysis showed that YGL9 comprises a chloroplast transit peptide, three chromodomains and four ankyrin repeats, and the chromodomains and ankyrin repeats are probably involved in protein-protein interactions. Subcellular localization showed that YGL9 is localized in the chloroplast. Expression pattern analysis indicated that YGL9 is mainly expressed in green leaf sheaths and leaves. Quantitative real-time PCR analysis showed that the expression levels of genes associated with pigment metabolism, chloroplast development and photosynthesis were distinctly affected in the ygl9 mutant. These results indicated that YGL9 is possibly involved in pigment metabolism, chloroplast development and photosynthesis in rice.
Reference | Related Articles | Metrics
Biotic Homogenization Caused by the Invasion of Solidago canadensis in China
CHEN Guo-qi, ZHANG Chao-bin, MA Ling, QIANG Sheng, John A Silander , Li Li Qi
2013, 12 (5): 835-845.   DOI: 10.1016/S2095-3119(13)60302-0
Abstract1777)      PDF in ScienceDirect      
Although studies argue that invasive species can cause biotic differentiation, some cases show that biological invasions actually decrease biodiversity through biotic homogenization. The concept of biotic homogenization through the invasion of a certain serious invasive plant species merit more studies. Hence, we used field surveys to quantitatively compare invasive populations of Solidago canadensis (SC) in China with the control sites (adjacent sites to SC present sites yet without the species) and SC native populations in the USA. We found that plant communities in SC invaded habitats shared similarities with those in SC native ranges. Bray-Curtis similarity clearly showed that the composition of plant communities in SC invaded habitats were similar to those in SC native ranges. Both in the native and introduced range, plant communities with SC present were characterized by SC being dominant, significantly lower species richness, α-diversity and β-diversity, as well as a decrease in the correlation coefficient between geographic distance and floristic similarities. SC favors fertile and moist loam habitat, while it dominated in various habitats in China, where more than 20 different dominants should have occurred. In conclusion, serious invasive species can quickly remodel and homogenize diverse communities by dominating them.
Reference | Related Articles | Metrics