Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation
HUANG Li-ying, Li Xiao-xiao, ZHANG Yun-bo, Shah FAHAD, WANG Fei
2022, 21 (11): 3185-3198.   DOI: 10.1016/j.jia.2022.07.057
Abstract264)      PDF in ScienceDirect      

The rice cultivars carrying dep1 (dense and erect panicle 1) have the potential to achieve both high grain yield and high nitrogen use efficiency (NUE).  However, few studies have focused on the agronomic and physiological performance of those cultivars associated with high yield and high NUE under field conditions.  Therefore, we evaluated the yield performance and NUE of two near-isogenic lines (NILs) carrying DEP1 (NIL-DEP1) and dep1-1 (NIL-dep1) genes under the Nanjing 6 background at 0 and 120 kg N ha–1.  Grain yield and NUE for grain production (NUEg) were 25.5 and 21.9% higher in NIL-dep1 compared to NIL-DEP1 averaged across N treatments and planting years, respectively.  The yield advantage of NIL-dep1 over NIL-DEP1 was mainly due to larger sink size (i.e., higher total spikelet number), grain-filling percentage, total dry matter production, and harvest index.  N utilization rather than N uptake contributed to the high yield of NIL-dep1.  Significantly higher NUEg in NIL-dep1 was associated with higher N and dry matter translocation efficiency, lower leaf and stem N concentration at maturity, and higher glutamine synthetase (GS) activity in leaves.  In conclusion, dep1 improved grain yield and NUE by increasing N and dry matter transport due to higher leaf GS activity under field conditions during the grain-filling period.

Reference | Related Articles | Metrics
Grain yield and lodging-related traits of ultrashort-duration varieties for direct-seeded and double-season rice in Central China
WANG Xin-yu, XU Le, LI Xiao-xiao, YANG Guo-dong, WANG Fei, PENG Shao-bing
2022, 21 (10): 2888-2899.   DOI: 10.1016/j.jia.2022.07.035
Abstract204)      PDF in ScienceDirect      
Lodging is the most common constraint on grain yield of direct-seeded rice.  There is limited information about lodging resistance and its related plant traits in direct-seeded and double-season rice (DDR) in Central China.  This study aims  to identify the plant traits that achieve high lodging resistance in ultrashort-duration varieties (about 95 days) of DDR.  Field experiments were conducted in 2017 and 2018 in Wuxue County, Hubei Province, China, with four ultrashort-duration varieties grown under two nitrogen (N) rates.  Lodging-related traits were measured on the 15th day after heading, and yield and yield attributes were measured at maturity.  The grain yield of the four varieties ranged from 4.59 to 7.61 t ha–1 across the two N rates, with a total growth duration of 85 to 97 days.  Varietal differences in lodging index were mainly explained by the bending moment, which was closely related to plant height.  Breaking resistance did not affect the lodging index significantly.  Shortening plant height from 95.4 to 80.5 cm decreased the lodging index by 22.4% but did not reduce grain yield.  Our results suggested that reducing plant height was effective in improving the lodging resistance of ultrashort-duration varieties of DDR.  Lodging resistance should be enhanced by improving breaking resistance rather than reducing plant height to increase DDR grain yield further.
Reference | Related Articles | Metrics