Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)
QIN Jin-xia, JIANG Yu-jie, LU Yun-ze, ZHAO Peng, WU Bing-jin, LI Hong-xia, WANG Yu, XU Sheng-bao, SUN Qi-xin, LIU Zhen-shan
2020, 19 (7): 1704-1720.   DOI: 10.1016/S2095-3119(19)62761-9
Abstract193)      PDF in ScienceDirect      
The Sugars Will Eventually be Exported Transporter (SWEET) gene family, identified as sugar transporters, has been demonstrated to play key roles in phloem loading, grain filling, pollen nutrition, and plant-pathogen interactions.  To date, the study of SWEET genes in response to abiotic stress is very limited.  In this study, we performed a genome-wide identification of the SWEET gene family in wheat and examined their expression profiles under mutiple abiotic stresses.  We identified a total of 105 wheat SWEET genes, and phylogenic analysis revealed that they fall into five clades, with clade V specific to wheat and its closely related species.  Of the 105 wheat SWEET genes, 59% exhibited significant expression changes after stress treatments, including drought, heat, heat combined with drought, and salt stresses, and more up-regulated genes were found in response to drought and salt stresses.  Further hierarchical clustering analysis revealed that SWEET genes exhibited differential expression patterns in response to different stress treatments or in different wheat cultivars.  Moreover, different phylogenetic clades also showed distinct response to abiotic stress treatments.  Finally, we found that homoeologous SWEET genes from different wheat subgenomes exhibited differential expression patterns in response to different abiotic stress treatments.  The genome-wide analysis revealed the great expansion of SWEET gene family in wheat and their wide participation in abiotic stress response.  The expression partitioning of SWEET homoeologs under abiotic stress conditions may confer greater flexibility for hexaploid wheat to adapt to ever changing environments.
Reference | Related Articles | Metrics
The mRNA Expression and Methylation Status in Imprinting Control Region of H19 Gene Between Cattle-Yak and Their Parents
LI Ming-gui*, LIU Zhen-shan*, PAN Zeng-xiang, LUO Hua, XIE Zhuang; LI Qi-fa
2012, 12 (10): 1691-1699.   DOI: 10.1016/S1671-2927(00)8702
Abstract1429)      PDF in ScienceDirect      
The H19 gene, which is imprinted with preferential expression from the maternal allele, was one of the first identified imprinting genes in mammals. Recent studies revealed that correct imprinting of the H19 gene plays a vital role in human spermatogenesis. To investigate whether imprinting defects were associated with the hybrid sterility of male cattle-yak, the methylation patterns of the H19 imprinting control region (ICR) and H19 mRNA expression in the testes of cattle-yak, yak, and cattle were examined. The results showed that the 3rd CCCTC-binding factor (CTCF) site of the H19 ICR was significantly hypomethylated in the testes of cattle-yak compared with yak or cattle. As expected, H19 was expressed at a significantly higher level in cattle-yak than in yak or cattle. These results suggest that imprinting defects of the CTCFbinding site in the H19 ICR were possibly associated with disturbed spermatogenesis of male cattle-yak. Thus, we propose that disorders in H19 imprinting, resulting in an increased H19 mRNA expression, might contribute to the sterility of F1 male hybrids between cattle and yak.
Reference | Related Articles | Metrics