导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((LIU Li-feng[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Co-silencing
E1
and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions
LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu
2022, 21 (
2
): 326-335. DOI:
10.1016/S2095-3119(20)63391-3
Abstract
(
229
)
PDF in ScienceDirect
Soybean (
Glycine max
(L.) Merr.), a typical short-day plant, is sensitive to photoperiod, which limits the geographical range for its cultivation. In the flowering pathway regulated by photoperiod,
E1
, a flowering inhibitor in soybean, plays the dominant role in flowering time regulation. Two
E1
homologs,
E1
-like-a (
E1La
) and
E1
-like-b (
E1Lb
), play overlapping or redundant roles in conjunction with
E1
. In the present study,
E1
and
E1La/b
were simultaneously silenced via RNA interference (RNAi) in Zigongdongdou (ZGDD), an extremely late-flowering soybean landrace from southern China. As a result, RNAi lines showed a much earlier-flowering phenotype and obvious photoperiod insensitivity compared with wild-type (WT) plants. In RNAi transgenic plants, the expression levels of flowering inhibitor
GmFT4
and flowering promoters
GmFT2a
/
GmFT5a
were significantly down- and up-regulated, respectively. Further, the maturity group (MG) of the RNAi lines was reduced from WT ZGDD’s MG VIII (extremely late-maturity) to MG 000 (super-early maturity), which can even grow in the northernmost village of China located at a latitude of 53.5°N. Our study confirms that
E1
and
E1La/b
can negatively regulate flowering time in soybean. The RNAi lines generated in this study, with early flowering and maturity traits, can serve as valuable materials and a technical foundation for breeding soybeans that are adapted to high-latitude short-season regions.
Reference
|
Related Articles
|
Metrics
Select
Identification of main effect and epistatic QTLs controlling initial flowering date in cultivated peanut (
Arachis hypogaea
L.)
WANG Liang, YANG Xin-lei, CUI Shun-li, WANG Ji-hong, HOU Ming-yu, MU Guo-jun, LI Zi-chao, LIU Li-feng
2020, 19 (
10
): 2383-2393. DOI:
10.1016/S2095-3119(20)63211-7
Abstract
(
109
)
PDF in ScienceDirect
Initial flowering date (IFD) is closely related to mature period of peanut pods. In present study, a population of recombinant inbred lines (RIL) derived from the cross between Silihong (female parent) and Jinonghei 3 (male parent) was used to map QTLs associated with IFD. The RIL population and its two parental cultivars were planted in two locations of Hebei Province, China from 2015 to 2018 (eight environments). Based on a high-density genetic linkage map (including 2 996 SNP and 330 SSR markers) previously constructed in our laboratory, QTLs were analyzed using phenotypic data and the best linear unbiased prediction (BLUP) value of initial flowering date by inclusive composite interval mapping (ICIM) method. Interaction effects between every two QTLs and between individual QTL and environment were also analyzed. In cultivated peanut, IFD was affected by genotypic factor and environments simultaneously, and its broad sense heritability (h2) was estimated as 86.8%. Using the IFD phenotypic data from the eight environments, a total of 19 QTLs for IFD were detected, and the phenotypic variation explained (PVE) by each QTL ranged from 1.15 to 21.82%. Especially, five of them were also detected by the BLUP value of IFD. In addition, 12 additive QTLs and 35 pairs of epistatic QTLs (62 loci involved) were identified by the joint analysis of IFD across eight environments. Three QTLs (
qIFDB04.1
,
qIFDB07
.
1
and
qIFDB08.1
) located on chromosome B04, B07 and B08 were identified as main-effect QTL for IFD, which had the most potential to be used in peanut breeding. This study would be helpful for the early-maturity and adaptability breeding in cultivated peanut.
Reference
|
Related Articles
|
Metrics