Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.
WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu
2023, 22 (10): 2981-2992.   DOI: 10.1016/j.jia.2023.02.017
Abstract217)      PDF in ScienceDirect      

Plant height is a key plant architectural trait that affects the seed yield, harvest index and lodging resistance in Brassica napus L., although the genetic mechanisms affecting plant height remain unclear.  Here, a semi-dwarf mutant, df34, was obtained by ethyl methanesulphonate-induced mutagenesis.  Genetic analysis showed that the semi-dwarf phenotype is controlled by one semi-dominant gene, which was located on chromosome C03 using a bulked segregant analysis coupled with whole-genome sequencing, and this gene was named BnaSD.C3.  Then BnaSD.C3 was fine-mapped to a 297.35-kb segment of the “Darmor-bzh” genome, but there was no potential candidate gene for the semi-dwarf trait underlying this interval.  Furthermore, the interval was aligned to the Zhongshuang 11 reference genome.  Finally, combining structural variation analysis, transcriptome sequencing, phytohormone analyses and gene annotation information, BnaC03G0466900ZS and BnaC03G0478900ZS were determined to be the most likely candidate genes affecting the plant height of df34.  This study provides a novel major locus for breeding and new insights into the genetic architecture of plant height in Bnapus

Reference | Related Articles | Metrics
Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed
MA Ni, WAN Lin, ZHAO Wei, LIU Hong-fang, LI Jun, ZHANG Chun-lei
2020, 19 (2): 465-482.   DOI: 10.1016/S2095-3119(19)62810-8
Abstract144)      PDF in ScienceDirect      
Strigolactones (SLs) are newly discovered plant hormones which regulate the normal development of different plant organs, especially root architecture.  Lateral root formation of rapeseed seedlings before winter has great effects on the plant growth and seed yield.  Here, we treated the seedlings of Zhongshuang 11 (ZS11), an elite conventional rapeseed cultivar, with different concentrations of GR24 (a synthetic analogue of strigolactones), and found that a low concentration (0.18 µmol L–1) of GR24 could significantly increase the lateral root growth, shoot growth, and root/shoot ratio of seedlings.  RNA-Seq analysis of lateral roots at 12 h, 1 d, 4 d, and 7 d after GR24 treatment showed that 2 301, 4 626, 1 595, and 783 genes were significantly differentially expressed, respectively.  Function enrichment analysis revealed that the plant hormone transduction pathway, tryptophan metabolism, and the phenylpropanoid biosynthesis pathway were over-represented.  Moreover, transcription factors, including AP2/ERF, AUX/IAA, NAC, MYB, and WRKY, were up-regulated at 1 d after GR24 treatment.  Metabolomics profiling further demonstrated that the amounts of various metabolites, such as indole-3-acetic acid (IAA) and cis-zeatin were drastically altered.  In particular, the concentrations of endogenous IAA significantly decreased by 52.4 and 75.8% at 12 h and 1 d after GR24 treatment, respectively.  Our study indicated that low concentrations of exogenous SLs could promote the lateral root growth of rapeseed through interaction with other phytohormones, which provides useful clues for the effects of SLs on root architecture and crop productivity.
 
Reference | Related Articles | Metrics