Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Biosynthesis of artemisinic acid in engineered Saccharomyces cerevisiae and its attraction to the mirid bug Apolygus lucorum
TENG Dong, LIU Dan-feng, Khashaveh ADEL, SUN Pei-yao, GENG Ting, ZHANG Da-wei, ZHANG Yong-jun
2022, 21 (10): 2984-2994.   DOI: 10.1016/j.jia.2022.07.040
Abstract155)      PDF in ScienceDirect      

Artemisia annua is an important preferred host of the mirid bug Apolygus lucorum in autumn.  Volatiles emitted from Aannua attract Alucorum.  Volatile artemisinic acid of Aannua is a precursor of artemisinin that has been widely investigated in the Chinese herbal medicine field.  However, little is known at this point about the biological roles of artemisinic acid in regulating the behavioral trends of Alucorum.  In this study, we collected volatiles from Aannua at the seedling stage by using headspace solid phase microextraction (HS-SPME).  Gas chromatography-mass spectrometry (GC-MS) analysis showed that approximately 11.03±6.00 and 238.25±121.67 ng h–1 artemisinic acid were detected in volatile samples and milled samples, respectively.  Subsequently, a key gene for artemisinic acid synthesis, the cytochrome P450 gene cyp71av1, was expressed in engineered Saccharomyces cerevisiae to catalyze the production of artemisinic acid.  After the addition of exogenous artemisinic alcohol or artemisinic aldehyde, artemisinic acid was identified as the product of the expressed gene.  In electroantennogram (EAG) recordings, 3-day-old adult Alucorum showed significant electrophysiological responses to artemisinic alcohol, artemisinic aldehyde and artemisinic acid.  Furthermore, 3-day-old female bugs were significantly attracted by artemisinic acid and artemisinic alcohol at a concentration of 10 mmol L–1, whereas 3-day-old male bugs were attracted significantly by 10 mmol L–1 artemisinic acid and artemisinic aldehyde.  We propose that artemisinic acid and its precursors could be used as potential attractant components for the design of novel integrated pest management strategies to control Alucorum.

Reference | Related Articles | Metrics
Two farnesyl pyrophosphate synthases, GhFPS1–2, in Gossypium hirsutum are involved in the biosynthesis of farnesol to attract parasitoid wasps
ZHANG Hong, HUANG Xin-zheng, JING Wei-xia, LIU Dan-feng, Khalid Hussain DHILOO, HAO Zhi-min, ZHANG Yong-jun
2020, 19 (9): 2274-2285.   DOI: 10.1016/S2095-3119(20)63203-8
Abstract168)      PDF in ScienceDirect      
Sesquiterpenoids play an import role in the direct or indirect defense of plants.  Farnesyl pyrophosphate synthases (FPSs) catalyze the biosynthesis of farnesyl pyrophosphate, which is a key precursor of farnesol and (E)-β-farnesene.  In the current study, two FPS genes in Gossypium hirsutum, GhFPS1 and GhFPS2, were heterologously cloned and functionally characterized in a greenhouse setting.  The open reading frames for full-length GhFPS1 and GhFPS2 were each 1 029 nucleotides, and encoded two proteins of 342 amino acids with molecular weights of 39.4 kDa.  The deduced amino acid sequences of GhFPS1–2 showed high identity to FPSs of other plants.  Quantitative real-time PCR analysis revealed that GhFPS1 and GhFPS2 were highly expressed in G. hirsutum leaves, and were upregulated in methyl jasmonate (MeJA)-, methyl salicylate (MeSA)- and aphid infestation-treated cotton plants.  The recombinant proteins of either GhFPS1 or GhFPS2 plus calf intestinal alkaline phosphatase could convert geranyl diphosphate (GPP) or isopentenyl diphosphate (IPP) to one major product, farnesol.  Moreover, in electrophysiological response and Y-tube olfactometer assays, farnesol showed obvious attractiveness to female Aphidius gifuensis, which is an important parasitic wasp of aphids.  Our findings suggest that two GhFPSs are involved in farnesol biosynthesis and they play a crucial role in indirect defense of cotton against aphid infestation.
Related Articles | Metrics