Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Physiological evaluation of nitrogen use efficiency of different apple cultivars under various nitrogen and water supply conditions
WANG Qian, LIU Chang-hai, HUANG Dong, DONG Qing-long, LI Peng-min, Steve van NOCKER, MA Feng-wang
2020, 19 (3): 709-720.   DOI: 10.1016/S2095-3119(19)62848-0
Abstract154)      PDF in ScienceDirect      
Nitrogen (N) deficiency is a common problem for apple (Malus×domestica) production in arid regions of China.  However, N utilization efficiency (NUE) of different apple cultivars grown under low N conditions in arid regions has not been evaluated. In this study, NUE was assessed for one-year-old seedlings of six apple cultivars, Golden Delicious, Qinguan, Jonagold, Honeycrisp, Fuji and Pink Lady, grafted onto Malus hupehensis Rehd. rootstocks.  Four treatments were used, including control water with control N (CWCN), limited water with control N (LWCN), control water with low N (CWLN) and limited water with low N (LWLN).  Our results showed that growth indices such as biomass, plant height and stem diameter, and photosynthetic rate of all cultivars decreased in the order CWCN>CWLN>LWCN>LWLN.  When subjected to LWLN treatment, Qinguan showed better growth and photosynthetic characters than other tested cultivars.  Additionally, Qinguan and Pink Lady had higher NUE, while Honeycrisp and Jonagold had lower NUE, based on the determination of biomass, photosynthetic parameters, chlorophyll content, the maximal photochemical efficiency of PSII (Fv/Fm), 15N and N contents.
 
Reference | Related Articles | Metrics
Transcriptome analysis reveals the effects of alkali stress on root system architecture and endogenous hormones in apple rootstocks
LIU Xuan, LIANG Wei, LI Yu-xing, LI Ming-jun, MA Bai-quan, LIU Chang-hai, MA Feng-wang, LI Cui-ying
2019, 18 (10): 2264-2271.   DOI: 10.1016/S2095-3119(19)62706-1
Abstract144)      PDF in ScienceDirect      
Soil alkalinity is a major factor that restricts the growth of apple roots. To analyze the response of apple roots to alkali stress, the root structure and endogenous hormones of two apple rootstocks, Malus prunifolia (alkali-tolerant) and Malus hupehensis (alkali-sensitive), were compared. To understand alkali tolerance of M. prunifolia at the molecular level, transcriptome analysis was performed. When plants were cultured in alkaline conditions for 15 d, the root growth of M. hupehensis with weak alkali tolerance decreased significantly. Analysis of endogenous hormone levels showed that the concentrations of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in M. hupehensis under alkali stress were lower than those in the control. However, the trend for IAA and ZR in M. prunifolia was the opposite. The concentration of abscisic acid (ABA) in the roots of the two apple rootstocks under alkali stress increased, but the concentration of ABA in the roots of M. prunifolia was higher than that in M. hupehensis. The expression of IAA-related genes ARF5, GH3.6, SAUR36, and SAUR32 and the Cytokinin (CTK)-related gene IPT5 in M. prunifolia was higher than those in the control, but the expression of these genes in M. hupehensis was lower than those in the control. The expression of ABA-related genes CIPK1 and AHK1 increased in the two apple rootstocks under alkali stress, but the expression of CIPK1 and AHK1 in M. prunifolia was higher than in M. hupehensis. These results demonstrated that under alkali stress, the increase of IAA, ZR, and ABA in roots and the increase of the expression of related genes promoted the growth of roots and improved the alkali tolerance of apple rootstocks.
Related Articles | Metrics