Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
C-type natriuretic peptide stimulates chicken myoblast differentiation through NPRB/NPRC receptors and metabolism pathway
HUANG Hua-yun, LIANG Zhong, LIU Long-zhou, LI Chun-miao, HUANG Zhen-yang, WANG Qian-bao, LI Shou-feng, ZHAO Zhen-hua
2022, 21 (2): 496-503.   DOI: 10.1016/S2095-3119(21)63694-8
Abstract220)      PDF in ScienceDirect      
Skeletal muscle development is closely related with the amount of meat production and its quality in chickens.  Natriuretic peptides (NPs) play an important role in myotube formation and fat oxidation of skeletal muscle in animals.  The effect of C-type natriuretic peptide (CNP), an important member of the NPs, and its underlying molecular mechanisms in skeletal muscle are incompletely understood.  Treatment of myoblasts with CNP led to enhanced proliferation/differentiation and significantly upregulated (P<0.05) mRNA expression of the CNP receptors natriuretic peptide receptor B (NPRB) and the clearance receptor C (NPRC).  In cells exposed to CNP, 142 differentially expressed genes (84 up-regulation and 58 down-regulation) (P<0.05) were identified by RNA-sequencing compared with those in control cells.  Sixteen genes were significantly enriched (P<0.05) in the metabolic pathway, and six of them (phospholipase C β4, phospholipase C β2, phosphoglycerate mutase 1, creatine kinase B, peroxiredoxin 6 and CD38) were closely related to skeletal muscle development and differentially expressed.  In conclusion, CNP stimulated differentiation of myoblasts by upregulating expression of the NPRB and NPRC receptors and enriching key genes in the metabolic pathway.  
Reference | Related Articles | Metrics
Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)
SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang
2021, 20 (9): 2424-2437.   DOI: 10.1016/S2095-3119(20)63568-7
Abstract162)      PDF in ScienceDirect      
Salicylic acid (SA) plays a pivotal role in delaying fruit ripening and senescence.  However, little is known about its underlying mechanism of action.  In this study, RNA sequencing was conducted to analyze and compare the transcriptome profiles of SA-treated and control pear fruits.  We found a total of 159 and 419 genes differentially expressed between the SA-treated and control pear fruits after 12 and 24 h of treatment, respectively.  Among these differentially expressed genes (DEGs), 125 genes were continuously differentially expressed at both treatment times, and they were identified as candidate genes that might be associated with SA-regulated fruit ripening and senescence.  Bioinformatics analysis results showed that 125 DEGs were mainly associated with plant hormone biosynthesis and metabolism, cell wall metabolism and modification, antioxidant systems, and senescence-associated transcription factors.  Additionally, the expression of several candidate DEGs in ripening and senescent pear fruits after SA treatments were further validated by quantitative real-time PCR (qRT-PCR).  This study provides valuable information and enhances the understanding of the comprehensive mechanisms of SA-meditated pear fruit ripening and senescence.
 
Reference | Related Articles | Metrics