Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application
GUAN Xian-jiao, CHEN Jin, CHEN Xian-mao, XIE Jiang, DENG Guo-qiang, HU Li-zhen, LI Yao, QIAN Yin-fei, QIU Cai-fei, PENG Chun-rui
2022, 21 (5): 1278-1289.   DOI: 10.1016/S2095-3119(20)63595-X
Abstract168)      PDF in ScienceDirect      
To address the relationships between the amount of nitrogen fertilizer application and the yield of double cropping rice systems, we investigated the effects of a cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application (SDN) on the morphological and physiological characteristics of double cropping rice.  Our results indicated that the effects of SDN on the morphological characteristics of the single plant roots of double cropping rice were not significant, but the morphological characteristics of the population roots were largely different.  Specifically, SDN significantly increased the morphological indexes of the root population such as root fresh weight, root volume, root number, root length and root dry weight.  The effects of SDN on the total root absorption areas and root active absorption areas of the single plants were non-significant, but it dramatically enhanced the total root absorption areas and root active absorption areas of the plant population during the tillering, heading and mature stages.  In addition, SDN significantly increased the root bleeding intensity and elevated the soluble sugar and free amino acid contents of root bleeding sap.  Compared to the traditional cultivation pattern (CK), SDN significantly increased root bleeding intensity at the heading stage by 4.37 and 8.90% for early and late rice, respectively.  Meanwhile, SDN profoundly enhanced the soluble sugar contents of root bleeding sap by 12.85 and 10.41% for early and late rice, respectively.  In addition, SDN also significantly enhanced free amino acid content of root bleeding sap by 43.25% for early rice and by 37.50% for late rice systems compared to CK.  Furthermore, SDN increased the actual yield of double cropping rice mainly due to the higher effective panicle number and the larger seed-setting rate.  The actual yields of early rice under SDN were higher than CK by 9.37 and 5.98% in 2016 and 2017, and the actual yields of late rice under SDN were higher than CK by 0.20 and 1.41% in 2016 and 2017, respectively.  Correlation analysis indicated that the significant positive correlations were observed between the majority of the root indexes and the actual yield across the four different growth stages.

Reference | Related Articles | Metrics
Polypropylene crisper and 1-MCP delay the softening, lignification and transcription levels of related enzyme genes of golden needle mushrooms (Flammulina velutipes)
WANG Wen-jun, LI Yao, LI Fu-hua, ZENG Kai-fang, MING Jian
2022, 21 (1): 249-260.   DOI: 10.1016/S2095-3119(21)63764-4
Abstract142)      PDF in ScienceDirect      
The fresh postharvest golden needle mushroom (Flammulina velutipes) sporocarp has a high moisture content and crisp texture, but it still has high physiological activity and respiration, leading to senescence and quality deterioration.  Treatments with 1-methylcyclopropene (1-MCP) and polypropylene (PP) crispers were used to study the changes of lignification and softening of F. velutipes during storage.  The main findings were as follows: the crisper packaging could effectively prolong the storage time of F. velutipes; either the 1-MCP treatment, crisper packaging or the combination of the two treatments could significantly inhibit the accumulation of lignin and the decreases in the contents of cellulose and pectin, and had certain inhibitory effects on the activities of enzymes involved in lignification and softening including phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), cellulase (Cx), pectin methylesterase (PME) and polygalacturonase (PG).  Among them, the inhibitory effect of the crisper packaging was higher than the 1-MCP treatment, while the combination of the two treatments was the best.  The results of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the crisper packaging in combination with the 1-MCP treatment could effectively maintain the integrity and stability of the F. velutipes cellular structure and inhibit the emergence of plasmolysis to prevent cell membrane rupture.  The transcription levels showed that the crisper packaging and the combination of the 1-MCP treatment and crisper packing could effectively affect the expression of genes for enzymes related to lignification and softening of Fvelutipes.  In conclusion, 1-MCP and PP crispers could delay the lignification and softening of F. velutipes during storage.
Reference | Related Articles | Metrics
Effects of a novel mesoionic insecticide, triflumezopyrim, on the feeding behavior of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae)
ZHU Jun, SUN Wen-qing, LI Yao, GE Lin-quan, YANG Guo-qing, XU Jian-xiang, LIU Fang
2020, 19 (10): 2488-2449.   DOI: 10.1016/S2095-3119(20)63197-5
Abstract149)      PDF in ScienceDirect      
The rice planthoppers, Nilaparvata lugens and Sogatella furcifera, are important sap-sucking pests of rice in Asia.  The mesoionic insecticide triflumezopyrim was previously shown to be highly effective in controlling both N. lugens and S. furcifera.  In this study, electropenetrography (EPG) was used to evaluate the effect of three triflumezopyrim concentrations (LC10, LC50 and LC90) on the feeding behavior of N. lugens and S. furcifera.  EPG signals of planthoppes indicated that there were six different waveforms NP, N1, N2, N3, N4, and N5, which corresponded to non-penetration, stylet penetration into epidermis, salivation, extracellular movement of stylet, sap ingestion in phloem, and water ingestion in xylem during feeding.  Compared to untreated controls, triflumezopyrim at LC50 and LC90 prolonged the duration of the non-penetration period by 105.3 to 333.7%.  The probing frequencies of N. lugens exposed to triflumezopyrim at LC10 and LC50 were significantly increased; however, the probing frequencies of S. furcifera showed a significant decrease when exposed to triflumezopyrim at all concentrations.  Triflumezopyrim exposure prolonged the duration of salivation and shortened the duration of extracellular movement.  The duration of phloem sap ingestion decreased from 37.2 to 77.7% in the LC50 and LC90 treatments, respectively.  Differences in feeding behavior in response to triflumezopyrim and pymetrozine were minimal.  In summary, the results show that the LC50 and LC90 concentrations of triflumezopyrim inhibit the feeding activities of N. lugens and S. furcifera mainly by prolonging the duration of non-penetration and by shortening the duration of phloem sap ingestion, which may foster more efficient use of triflumezopyrim in Asia.
Reference | Related Articles | Metrics
Identification and characterization of a TLR13 gene homologue from Laodelphax striatellus involved in the immune response induced by rice stripe virus
ZHOU Xue, HU Jia, FU Mei-li, JIN Ping, ZHANG Yun-ye, XIANG Ying, LI Yao, MA Fei
2020, 19 (1): 183-192.   DOI: 10.1016/S2095-3119(19)62795-4
Abstract200)      PDF in ScienceDirect      
Toll-like receptors (TLRs) are the critical superfamily homologues that initiate sensing of the invasion of pathogens by the Toll pathway.  As one of several intracellular nucleic acid-sensing TLRs, TLR13 is activated by an unmethylated motif present in the large ribosomal subunit of bacterial RNA.  However, little attention has been paid to the function of TLR13 gene homologue from Laodelphax striatellus (designated as LsToll-13) in the immune response to rice stripe virus (RSV).  Herein, LsToll-13 was cloned and characterized using RACE-PCR.  Phylogenetic analysis showed that LsToll-13 was clustered with the TLR13 from six insects.  Real-time PCR analysis demonstrated that the expression level of LsToll-13 was significantly reduced in L.?striatellus with RSV infection compared with that in the naive strain.  When the expression of LsToll-13 was significantly up-regulated at 6 h after bacterial infection, the expression of ribonucleoprotein (RNP) indicated that the RSV titer in the host insect was significantly suppressed.  Upon knockdown of LsToll-13, using RNA interference (RNAi) in L.?striatellus, the expression level of RNP was significantly increased with enhanced RSV accumulation, suggesting that LsToll-13 potentially protects L.?striatellus from RSV infection.  Taken together, our results indicated that LsToll-13 might be involved in the immune response of L.?striatellus to RSV infection, and provided a new insight into further elucidating the molecular mechanisms of complex pathogen-host interactions and integrative pest management.
Reference | Related Articles | Metrics
Selectivity and sublethal effects of some frequently-used biopesticides on the predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae)
DAI Wei, LI Yao, ZHU Jun, GE Lin-quan, YANG Guo-qing, LIU Fang
2019, 18 (1): 124-133.   DOI: 10.1016/S2095-3119(17)61845-8
Abstract319)      PDF (783KB)(226)      
The green miridbug, Cyrtorhinus lividipennis, is an important predator of the rice brown planthopper, Nilaparvata lugens.  In this study, the selective toxicity of seven commercial biopesticides for C. lividipennis was examined under laboratory conditions; abamectin was the most selective to C. lividipennis, followed by matrine and azadirachtin.  Veratridine, rotenone, Bacillus thuringiensis and Beauveria bassiana showed less selectivity for C. lividipennis.  Subsequently, matrine, abamectin and azadirachtin were selected for sublethal assessments with respect to C. lividipennis due to their high toxicities to N. lugens C. lividipennis treated with sublethal concentrations (LC10 and LC20) of the three biopesticides could distinguish volatiles released from healthy and N. lugens-infested plants indicating that the biopesticides tested did not affect the foraging ability of surviving miridbugs.  Azadirachtin decreased the consumption capability of C. lividipennis when the densities of N. lugens were 20, 30, 40 and 50 insects per vial.  Sublethal concentration treatment did not impact the pre-oviposition period or egg hatchability of C. lividipennis.  However, the fecundity of C. lividipennis exposed to azadirachtin and abamectin increased by 27–41% compared to the untreated individuals.  In summary, abamectin or matrine together with C. lividipennis could be considered an effective, sustainable pest management strategy for rice.
Reference | Related Articles | Metrics
Amplification and function analysis of N6-adenine-specific DNA methyltransferase gene in Nilaparvata lugens
ZHANG Jiao, XING Yan-ru, HOU Bo-feng, YUAN Zhu-ting, LI Yao, JIE Wen-cai, SUN Yang, LI Fei
2016, 15 (3): 591-599.   DOI: 10.1016/S2095-3119(15)61180-7
Abstract1942)      PDF in ScienceDirect      
Methylation of the N6 position of adenine, termed N6-methyladenine, protects DNA from restriction endonucleases via the host-specific restriction-modification system. N6-methyladenine was discovered and has been well studied in bacteria. N6-adenine-specific DNA methyltransferase (N6AMT) is the main enzyme catalyzing the methylation of the adenine base and knowledge of this enzyme was mainly derived from work in prokaryotic models. However, large-scale gene discovery at the genome level in many model organisms indicated that the N6AMT gene also exists in eukaryotes, such as humans, mice, fruit flies and plants. Here, we cloned a N6AMT gene from Nilaparvata lugens (Nlu-N6AMT) and amplified its fulllength transcript. Then, we carried out a systematic investigation of N6AMT in 33 publically available insect genomes, indicating that all studied insects had N6AMT. Genomic structure analysis showed that insect N6AMT has short introns compared with the mammalian homologs. Domain and phylogenetic analysis indicated that insect N6AMT had a conserved N6-adenineMlase domain that is specific to catalyze the adenine methylation. Nlu-N6AMT was highly expressed in the adult female. We knocked down Nlu-N6AMT by feeding dsRNA from the second instar nymph to adult female, inducing retard development of adult female. In all, we provide the first genome-wide analysis of N6AMT in insects and presented the experimental evidence that N6AMT might have important functions in reproductive development and ovary maturation.
Reference | Related Articles | Metrics
Transient Expression of Exogenous Gene into Plant Cell Mediated by PEI Nanovector
LI Ying, CUI Hai-xin, SONG Yu, LI Yao, HUANG Jin-li
2011, 10 (6): 820-826.   DOI: 10.1016/S1671-2927(11)60067-9
Abstract3406)      PDF in ScienceDirect      
This study was carried out to investigate the transfection effect of exogenous gene into plant protoplast cell mediated by polyethylenimine (PEI) nanovector, based on PEI gene delivery system in the field of medical science. PEI/DNA complexes were prepared by using PEI polymer to bind the plant expression plasmid, pCMl205-GFPn. The ability of PEI combining and protecting DNA was investigated by agarose gel electrophoresis retardation assay. The surface characteristics of PEI/DNA complexes were observed with transmission electron microscope. The transfection efficiency of Arabidopsis thaliana protoplasts mediated by PEI/DNA complexes at different N/P ratios was analyzed based on observation of transient expression of green fluorescent protein with confocal laser scanning microscope. PEI could bind and condense DNA, and form stable 100-200 nm PEI/DNA complexes when the proportion of PEl and DNA is in the range of 5:1-1:4. Transfection efficiency of PEI/DNA complexes increased with N/P ratios in range of N/P<5 and reached the highest at N/P=5, and began to decrease beyond N/P>5 as higher toxicity to cells. The transfection efficiency of PEI/DNA complexes at N/P=5 was higher than PEG. This study confirmed that PEI nanovector could effectively mediate foreign gene entering into A. thaliana protoplast cell to obtain transient expression, which may be developed as a hopeful and novel transgenic method combined with plant protoplast regeneration.
Reference | Related Articles | Metrics