Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review
LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng
2022, 21 (9): 2465-2476.   DOI: 10.1016/j.jia.2022.07.013
Abstract633)      PDF in ScienceDirect      
Maize (Zea mays L.) can exhibit yield penalties as a result of unfavorable changes to growing conditions.  The main threat to current and future global maize production is heat stress.  Maize may suffer from heat stress in all of the growth stages, either continuously or separately.  In order to manage the impact of climate driven heat stress on the different growth stages of maize, there is an urgent need to understand the similarities and differences in how heat stress affects maize growth and yield in the different growth stages.  For the purposes of this review, the maize growth cycle was divided into seven growth stages, namely the germination and seedling stage, early ear expansion stage, late vegetative growth stage before flowering, flowering stage, lag phase, effective grain-filling stage, and late grain-filling stage.  The main focus of this review is on the yield penalty and the potential physiological changes caused by heat stress in these seven different stages.  The commonalities and differences in heat stress related impacts on various physiological processes in the different growth stages are also compared and discussed.  Finally, a framework is proposed to describe the main influences on yield components in different stages, which can serve as a useful guide for identifying management interventions to mitigate heat stress related declines in maize yield.
Reference | Related Articles | Metrics
Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management
LI Teng-teng, ZHANG Jiang-zhou, ZHANG Hong-yan, Chrisite PHRISITE, ZHANG Jun-ling
2022, 21 (12): 3611-3625.   DOI: 10.1016/j.jia.2022.08.072
Abstract162)      PDF in ScienceDirect      

No tillage (NT) and straw return (S) collectively affect soil organic carbon (SOC).  However, changes in the organic carbon pool have been under-investigated.  Here, we assessed the quantity and quality of SOC after 11 years of tillage and straw return on the North China Plain.  Concentrations of SOC and its labile fractions (particulate organic carbon (POC), potassium permanganate-oxidizable organic carbon (POXC), microbial biomass carbon (MBC) and dissolved organic carbon (DOC)), components of DOC by fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) and the chemical composition of SOC by 13C NMR spectroscopy were explored.  Treatments comprised conventional tillage (CT) and NT under no straw return (S0), return of wheat straw only (S1) or return of both wheat straw and maize residue (S2).  Straw return significantly increased the concentrations and stocks of SOC at 0-20 cm depth but no tillage stratified them with enrichment at 0-10 cm and a decrease at 10-20 cm in comparison to CT, especially under S2.  Labile C fractions showed similar patterns of variation to that of SOC, with POC and POXC more sensitive to straw return and the former more sensitive to tillage.  Six fluorescence components of DOC were identified comprising mostly humic-like substances with smaller amounts of fulvic acid-like substances and tryptophan. Straw return significantly decreased the fluorescence index (FI) and autochthonous index (BIX) and increased the humification index (HIX).  No tillage generally increased HIX in topsoil but decreased it and increased the FI and BIX below the topsoil.  The chemical composition of SOC was: O-alkyl C>alkyl-C>aromatic-C>carbonyl-C.  Overall, NT under S2 effectively increased SOC and its labile C forms and DOC humification in topsoil and microbially-derived DOC below the topsoil.  Return of both wheat and maize straw was a particularly strong factor for promoting soil organic carbon in the plough layer, and the stratification of SOC under no tillage may confer long-term influence on carbon sequestration.

Reference | Related Articles | Metrics
Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River Valleys Winter Wheat Zone in China since 1964
ZHANG Hong-jun, LI Teng, LIU Hong-wei, MAI Chun-yan, YU Guang-jun, LI Hui-li, YU Li-qiang, MENG Ling-zhi, JIAN Da-wei, YANG Li, LI Hong-jie, ZHOU Yang
2020, 19 (2): 438-448.   DOI: 10.1016/S2095-3119(19)62627-4
Abstract144)           
Analysis of genetic progress for lodging-related traits provides important information for further improvement of lodging resistance.  Forty winter wheat cultivars widely grown in the Yellow-Huai River Valleys Winter Wheat Zone (YHWZ) of China during the period of 1964–2015 were evaluated for several lodging-related traits in three cropping seasons.  Plant height, height at center of gravity, length of the basal second internode, and lodging index decreased significantly in this period, and the average annual genetic gains for these traits were –0.50 cm or –0.62%, –0.27 cm or –0.60%, –0.06 cm or –0.63%, and –0.01 or –0.94%, respectively.  Different from other traits, stem strength showed a significant increasing trend with the breeding period, and the annual genetic gains were 0.03 N or 0.05%.  Correlation analysis showed that lodging index was positively correlated with plant height, height at center of gravity, and length of the basal second internode, but negatively correlated with stem strength.  Meanwhile, significantly positive correlations were observed between plant height, height at center of gravity, and length of the basal first and second internodes.  By comparison with the wild types, dwarfing genes had significant effects on all lodging-related traits studied except for length of the basal first internode and stem strength.  Principle component analysis demonstrated that plant height and stem strength were the most important factors influencing lodging resistance.  Clustering analysis based on the first two principle components further indicated the targets of wheat lodging-resistant breeding have changed from reducing plant height to strengthening stem strength over the breeding periods.  This study indicates that the increase of stem strength is vital to improve lodging resistance in this region under the high-yielding condition when plant height is in an optimal range.
 
Reference | Related Articles | Metrics