Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Evaluation of drought tolerance in ZmVPP1-overexpressing transgenic inbred maize lines and their hybrids
JIA Teng-jiao, LI Jing-jing, WANG Li-feng, CAO Yan-yong, MA Juan, WANG Hao, ZHANG Deng-feng, LI Hui-yong
2020, 19 (9): 2177-2187.   DOI: 10.1016/S2095-3119(19)62828-5
Abstract140)      PDF in ScienceDirect      
The vacuolar proton-pumping pyrophosphatase gene (VPP) is often used to enhance plant drought tolerance via genetic engineering.  In this study, the drought tolerance of four transgenic inbred maize lines overexpressing ZmVPP1 (PH4CV-T, PH6WC-T, Chang7-2-T, and Zheng58-T) and their transgenic hybrids was evaluated at various stages.  Under normal and drought conditions, the height and fresh weight were greater for the four transgenic inbred maize lines than for the wild-type (WT) controls at the germination and seedling stages.  Additionally, the transgenic plants exhibited enhanced photosynthetic efficiency at the seedling stage.  In irrigated and non-irrigated fields, the four transgenic lines grew normally, but with increased ear weight and yield compared with the WT plants.  Moreover, the ear weight and yield of the transgenic hybrids resulting from the PH4CV-T×PH6WC-W and Chang7-2-T×Zheng58-W crosses increased in the non-irrigated field.  Our results demonstrated that the growth and drought tolerance of four transgenic inbred maize lines with improved photosynthesis were enhanced by the overexpression of ZmVPP1.  Moreover, the Chang7-2 and PH4CV transgenic lines may be useful for future genetic improvements of maize hybrids to increase drought tolerance.
Reference | Related Articles | Metrics
Molecular mechanisms controlling seed set in cereal crop species under stress and non-stress conditions
LI Hui-yong, Thomas Lübberstedt
2018, 17 (05): 965-974.   DOI: 10.1016/S2095-3119(17)61719-2
Abstract576)      PDF (826KB)(386)      
Maximizing seed yield is the ultimate breeding goal in important cereal crop species.  Seed set is a key developmental stage in the process of seed formation, which determines grain number, seed mass, and realized yield potential, and can be severely affected by abiotic and biotic stresses.  However, seed set can also be substantially reduced by genetic factors even under optimal fertilization conditions.  The underlying molecular genetic mechanisms are still obscure.  In this review, we elucidate the process of seed set of cereal crop species in detail, including development of floral structures, formation of viable gametes, double fertilization, seed development, and abortion.  We discuss how genetic and non-genetic factors affect seed set in different development stages.  Finally, we will propose novel strategies to study genetic mechanisms controlling seed set and exploit genetic resources to improve seed set in cereal crop species.
Reference | Related Articles | Metrics