Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize
SHAO Rui-xin, YU Kang-ke, LI Hong-wei, JIA Shuang-jie, YANG Qing-hua, ZHAO Xia, ZHAO Ya-li, LIU Tian-xu
2021, 20 (7): 1783-1795.   DOI: 10.1016/S2095-3119(20)63304-4
Abstract118)      PDF in ScienceDirect      
Compared to other crops, maize production demands relatively high temperatures. However, temperatures exceeding 35°C lead to adverse effects on maize yield.  High temperatures (≥35°C) are consistently experienced by summer maize during its reproductive growth stage in the North China Plain, which is likely to cause irreversible crop damage.  This study investigated the effects of elevating temperature (ET) treatment on the yield component of summer maize, beginning at the 9th unfolding leaf stage and ending at the tasseling stage.  Results demonstrated that continuous ET led to a decrease in the elongation rate and activity of silks and an elongated interval between anthesis and silking stages, and eventually decreased grain number at ear tip and reduced yield.  Although continuous ET before tasseling damaged the anther structure, reduced pollen activity, delayed the start of the pollen shedding stage, and shortened the pollen shedding time, it was inferred, based on phenotypical and physiological traits, that continuous ET after the 9th unfolding leaf stage influenced ears and therefore may have more significant impacts.  Overall, when maize plants were exposed to ET treatment in the ear reproductive development stage, the growth of ears and tassels was blocked, which increased the occurrence of barren ear tips and led to large yield losses.
Reference | Related Articles | Metrics
Dynamic Change of Genetic Diversity in Conserved Populations with Different Initial Genetic Architectures
LU Yun-feng, LI Hong-wei, WU Ke-liang, WU Chang-xin
2013, 12 (7): 1225-1233.   DOI: 10.1016/S2095-3119(13)60439-6
Abstract1506)      PDF in ScienceDirect      
Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity in a closed conserved population. Our study suggested that current managements of conserved populations should emphasize on initial genetic architecture in order to make an effective and feasible conservation scheme.
Reference | Related Articles | Metrics