Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014
GAO Xing, LI Yong-xiang, YANG Ming-tao, LI Chun-hui, SONG Yan-chun, WANG Tian-yu, LI Yu, SHI Yun-su
2023, 22 (3): 691-700.   DOI: 10.1016/j.jia.2022.08.006
Abstract219)      PDF in ScienceDirect      
Grain filling is the physiological process for determining the obtainment of yield in cereal crops.  The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across multiple environments.  We found that the grain-filling duration (54.46%) and rate (43.40%) at the effective grain-filling phase greatly contributed to the final performance parameter of 100-kernel weight (HKW).  Meanwhile, along with the significant increase in HKW, the accumulated growing degree days (GDDs) for the actual grain-filling period duration (AFPD) among the selected brand hybrids released from the 1960s to the 2010s in China had a decadal increase of 23.41°C d.  However, there was a decadal increase of only 19.76°C d for GDDs of the days from sowing to physiological maturity (DPM), which was also demonstrated by a continuous decrease in the ratio between the days from sowing to silking (DS) and DPM (i.e., from 53.24% in the 1960s to 49.78% in the 2010s).  In contrast, there were no significant changes in grain-filling rate along with the release years of the selected hybrids.  Moreover, the stability of grain-filling characteristics across environments also significantly increased along with the hybrid release years.  We also found that the exotic hybrids showed a longer grain-filling duration at the effective grain-filling phase and more stability of the grain-filling characteristics than those of the Chinese local hybrids.  According to the results of this study, it is expected that the relatively longer grain-filling duration, shorter DS, higher grain-filling rate, and steady grain-filling characteristics would contribute to the yield improvement of maize hybrids in the future.  
Reference | Related Articles | Metrics
Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize
SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui
2023, 22 (11): 3394-3407.   DOI: 10.1016/j.jia.2023.04.022
Abstract238)      PDF in ScienceDirect      
The crown root system is the most important root component in maize at both the vegetative and reproductive stages.  However, the genetic basis of maize crown root traits (CRT) is still unclear, and the relationship between CRT and aboveground agronomic traits in maize is poorly understood.  In this study, an association panel including 531 elite maize inbred lines was planted to phenotype the CRT and aboveground agronomic traits in different field environments.  We found that root traits were significantly and positively correlated with most aboveground agronomic traits, including flowering time, plant architecture and grain yield.  Using a genome-wide association study (GWAS) coupled with resequencing, a total of 115 associated loci and 22 high-confidence candidate genes were identified for CRT.  Approximately one-third of the genetic variation in crown root was co-located with 46 QTLs derived from flowering and plant architecture.  Furthermore, 103 (89.6%) of 115 crown root loci were located within known domestication- and/or improvement-selective sweeps, suggesting that crown roots might experience indirect selection in maize during domestication and improvement.  Furthermore, the expression of Zm00001d036901, a high-confidence candidate gene, may contribute to the phenotypic variation in maize crown roots, and Zm00001d036901 was selected during the domestication and improvement of maize.  This study promotes our understanding of the genetic basis of root architecture and provides resources for genomics-enabled improvements in maize root architecture.

Reference | Related Articles | Metrics
Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing
HAO Lu-yang, LIU Xu-yang, ZHANG Xiao-jing, SUN Bao-cheng, LIU Cheng, ZHANG Deng-feng, TANG Huai-jun, LI Chun-hui, LI Yong-xiang, SHI Yun-su, XIE Xiao-qing, SONG Yan-chun, WANG Tian-yu, LI Yu
2020, 19 (2): 449-464.   DOI: 10.1016/S2095-3119(19)62660-2
Abstract174)      PDF in ScienceDirect      
Drought is one of the most important abiotic stresses affecting maize growth and development and therefore resulting in yield loss.  Thus it is essential to understand molecular mechanisms of drought stress responses in maize for drought tolerance improvement.  The root plays a critical role in plants sensing water deficit.  In the present study, two maize inbred lines, H082183, a drought-tolerant line, and Lv28, a drought-sensitive line, were grown in the field and treated with different water conditions (moderate drought, severe drought, and well-watered conditions) during vegetative stage.  The transcriptomes of their roots were investigated by RNA sequencing.  There were 1 428 and 512 drought-responsive genes (DRGs) in Lv28, 688 and 3 363 DRGs in H082183 under moderate drought and severe drought, respectively.  A total of 31 Gene Ontology (GO) terms were significantly over-represented in the two lines, 13 of which were enriched only in the DRGs of H082183.  Based on results of Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, “plant hormone signal transduction” and “starch and sucrose metabolism” were enriched in both of the two lines, while “phenylpropanoid biosynthesis” was only enriched in H082183.  Further analysis revealed the different expression patterns of genes related to abscisic acid (ABA) signal pathway, trehalose biosynthesis, reactive oxygen scavenging, and transcription factors might contribute to drought tolerance in maize.  Our results contribute to illustrating drought-responsive molecular mechanisms and providing gene resources for maize drought improvement.
Reference | Related Articles | Metrics
Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage
ZHANG Deng-feng, ZENG Ting-ru, LIU Xu-yang, GAO Chen-xi, LI Yong-xiang, LI Chun-hui, SONG Yan-chun, SHI Yun-su, WANG Tian-yu, LI Yu
2019, 18 (9): 1980-1995.   DOI: 10.1016/S2095-3119(18)62119-7
Abstract145)      PDF in ScienceDirect      
Drought stress affects the growth and productivity of crop plants including sorghum.  To study the molecular basis of drought tolerance in sorghum, we conducted the transcriptomic profiling of sorghum leaves and roots under drought stress using RNA-Seq method.  A total of 510, 559, and 3 687 differentially expressed genes (DEGs) in leaves, 3 368, 5 093, and 4 635 DEGs in roots responding to mild drought, severe drought, and re-watering treatments were identified, respectively.  Among them, 190 common DEGs in leaves and 1 644 common DEGs in roots were responsive to mild drought, severe drought, and re-watering environment.  Gene Ontology (GO) enrichment analysis revealed that the GO categories related to drought tolerance include terms related to response to stimulus especially response to water deprivation, abscisic acid stimulus, and reactive oxygen species.  The major transcription factor genes responsive to drought stress include heat stress transcription factor (HSF), ethylene-responsive transcription factor (ERF), Petunia NAM, Arabidopsis ATAF1/2 and CUC2 (NAC), WRKY transcription factor (WRKY), homeodomain leucine zipper transcription factor (HD-ZIP), basic helix-loop-helix transcription factor (bHLH),  and V-myb myeloblastosis viral oncogene homolog transcription facotr (MYB).  Functional protein genes for heat shock protein (HSPs), late-embryogenesis-abundant protein (LEAs), chaperones, aquaporins, and expansins might play important roles in sorghum drought tolerance.  Moreover, the genomic regions enriched with HSP, expansin, and aquaporin genes responsive to drought stress could be used as powerful targets for improvement of drought tolerance in sorghum and other cereals.  Overall, our results provide a genome-wide analysis of DEGs in sorghum leaves and roots under mild drought, severe drought, and re-watering environments.  This study contributes to a better understanding of the molecular basis of drought tolerance of sorghum and can be useful for crop improvement.
 
Reference | Related Articles | Metrics
Exploring differentially expressed genes associated with fertility instability of S-type cytoplasmic male-sterility in maize by RNA-seq
SU Ai-guo*, SONG Wei*, SHI Zi, ZHAO Yan-xin, XING Jin-feng, ZHANG Ru-yang, LI Chun-hui, LUO Mei-jie, WANG Ji-dong, ZHAO Jiu-ran
2017, 16 (08): 1689-1699.   DOI: 10.1016/S2095-3119(16)61494-6
Abstract952)      PDF in ScienceDirect      
The germplasm resources for the S-type male sterility is rich in maize and it is resistant to Bipolaris maydis race T and CI, but the commercial application of S-type cytoplasmic male sterility (CMS-S) in maize hybrid industry is greatly compromised because of its common fertility instability. Currently, the existence of multiple minor effect loci in specific nuclear genetic backgrounds was considered as the molecular mechanism for this phenomenon. In the present study, we evaluated the fertility segregation of the different populations with the fertility instable material FIL-H in two environments of Beijing and Hainan, China. Our results indicated that the fertility instability of FIL-H was regulated by multiple genes, and the expression of these genes was sensitive to environmental factors. Using RNA sequencing (RNA-seq) technology, transcriptomes of the sterile plants and partially fertile plants resulted from the backcross of FIL-H×Jing 724 in Hainan were analyzed and 2 108 genes with different expression were identified, including 1 951 up-regulated and 157 down-regulated genes. The cluster analysis indicated that these differentially expressed genes (DEGs) might play roles in many biological processes, such as the energy production and conversion, carbohydrate metabolism and signal transduction. In addition, the pathway of the starch and sucrose metabolism was emphatically investigated to reveal the DEGs during the process of starch biosynthesis between sterile and partially fertile plants, which were related to the key catalytic enzymes, such as ADP-G pyrophosphorylase, starch synthase and starch branching enzyme. The up-regulation of these genes in the partially fertile plant may promote the starch accumulation in its pollen. Our data provide the important theoretical basis for the further exploration of the molecular mechanism for the fertility instability in CMS-S maize.
Reference | Related Articles | Metrics