Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
UBE2I stimulates female gonadal differentiation in chicken (Gallus gallus) embryos
JIN Kai, ZHOU Jing, ZUO Qi-sheng, LI Jian-cheng, Jiuzhou SONG, ZHANG Ya-ni, CHANG Guo-bing, CHEN Guo-hong, LI Bi-chun
2021, 20 (11): 2986-2994.   DOI: 10.1016/S2095-3119(20)63486-4
Abstract112)      PDF in ScienceDirect      
Without known analogous sex-determining factors like SRY (sex determining region Y) in mammals, the chicken (Gallus gallus) sex determination mechanism still remains unclear, which highly restricts the biological research on chicken development and poultry single-sex reproduction.  Here we not only characterized a new female-biased gene UBE2I and identified the expression pattern by qRT-PCR, but also described the functional role of UBE2I in the gonadal development of chicken embryos.  Results showed that UBE2I exhibited a female-biased expression pattern in the early stage of PGCs (primordial germ cells) in embryonic gonads and robust expression in ovaries of newborn chickens.  Most importantly, we successfully developed an effective method to interfere or overexpress UBE2I in chicken embryos through the intravascular injection.  The qRT-PCR analysis showed that the sex-related genes (FOXL2, CYP19A1 and HINTW) in females were upregulated (P<0.05) under the overexpression of UBE2I and the sex-related genes (SOX9, DMRT1 and WT1) in females were downregulated (P<0.05) after interfering UBE2I.  Furthermore, the change of UBE2I expression was associated with the level of estradiol and its receptors (AR and ESR), which suggests that UBE2I is necessary to initiate the female-specific development in chickens.  In conclusion, this work demonstrates that UBE2I is a crucial sex differentiation-related gene in the embryonic development of chickens, which provides insights for further understanding the mechanism of sex determination in chickens.
 
Reference | Related Articles | Metrics
Research on the appropriate way to transfer exogenous substances into chicken embryos
WANG Yi-lin, JIN Kai, HE Na-na, CHENG Shao-ze, ZUO Qi-sheng, LI Dong, WANG Ying-jie, WANG Fei, JI Yan-qing, LU Zhen-yu, ZHANG Chen, WANG Man, ZHAO Rui-feng, YU Xin-jian, ZHANG Ya-ni, ZHAO Wen-ming...
2017, 16 (10): 2257-2263.   DOI: 10.1016/S2095-3119(17)61668-X
Abstract535)      PDF in ScienceDirect      
In biological research, chicken embryos are a classic experimental model for the exploration of the embryonic development and cell differentiation.  Transferring exogenous substances into chicken embryos for producing medical antibodies has been widely used in the production practice.  However, there are few studies about the effect of the different injection site and dosage on chicken embryos.  The aim of this study was to explore the effects of different injection sites and dosages on chicken embryo hatching rate and development, so as to provide a basis for further studies using the chicken embryo model.  Freshly laid eggs (Rugao yellow chicken) were injected with different doses of saline at the tip, equatorial plane and the blunt end of the egg shell, respectively.  Egg hatching rate was recorded and compared among injection sites and different doses.  A trypan blue stain was also injected at the aforementioned sites and the growth of chicken embryos was observed.  The SPSS (statistical package for the social science) software was used to analyze the relationship between the chicken eggs hatching rate and the different injection sites or the different dosages.  The experimental results showed that there were significant differences on egg hatching rates among the different injection sites and doses (P<0.05).  The hatchability of the blunt end injection group was significantly higher than that of the other two sites.  The egg hatching rate decreased with increased saline doses.  The egg hatching rate of the 100 µL saline injection group was higher than the 200 and 300 µL dosage groups.  Ultimately, we suggest that the optimal chicken embryo injection process is during early development, at the blunt end site with a dose less than 100 µL to minimize damage to the egg.
Reference | Related Articles | Metrics