Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum
Haiyang Li, Yuan Zhang, Cancan Qin, Zhifang Wang, Lingjun Hao, Panpan Zhang, Yongqiang Yuan, Chaopu Ding, Mengxuan Wang, Feifei Zan, Jiaxing Meng, Xunyu Zhuang, Zheran Liu, Limin Wang, Haifeng Zhou, Linlin Chen, Min Wang, Xiaoping Xing, Hongxia Yuan, Honglian Li, Shengli Ding
2024, 23 (9): 3055-3065.   DOI: 10.1016/j.jia.2024.01.001
Abstract161)      PDF in ScienceDirect      
Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot (FCR) in wheat and poses a significant threat to wheat production in terms of grain yield and quality.  However, the mechanism by which Fpseudograminearum infects wheat remains unclear.  In this study, we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of Fpseudograminearum.  By screening this mutant library, we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.  Among these mutants, one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1, encoding essential component of the Rpd3S histone deacetylase complex in F. pseudograminearum.  To further investigate the role of FpRCO1 in Fpseudograminearum, we employed a split-marker approach to knock out FpRCO1 in Fpseudograminearum WZ-8A.  FpRCO1 deletion mutants exhibit reduced vegetative growth, conidium production, and virulence in wheat coleoptiles and barley leaves, whereas the complementary strain restores these phenotypes.  Moreover, under stress conditions, the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl, sorbitol, and SDS, but possessed reduced sensitivity to H2O2 compared to these characteristics in the wild-type strain.  RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression (particularly the downregulation of TRI gene expression), thus resulting in significantly reduced deoxynivalenol (DON) production.  In summary, our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development, asexual reproduction, DON production, and pathogenicity of Fpseudograminearum.  This study provides valuable insights into the molecular mechanisms underlying Fpseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.


Reference | Related Articles | Metrics
A potential hyphal fusion protein complex with an important role in development and virulence interacts with autophagy-related proteins in Fusarium pseudograminearum
Linlin Chen, Yixuan Shan, Zaifang Dong, Yake Zhang, Mengya Peng, Hongxia Yuan, Yan Shi, Honglian Li, Xiaoping Xing
2024, 23 (12): 4093-4106.   DOI: 10.1016/j.jia.2023.09.005
Abstract196)      PDF in ScienceDirect      

Hyphal fusion (anastomosis) is a common process serving many important functions at various developmental stages in the life cycle of ascomycetous fungi.  However, the biological roles and molecular mechanisms in plant pathogenic fungi were widely unknown.  In this study, a hyphal fusion protein FpHam-2 was screened from a T-DNA insertion mutant library of Fusarium pseudograminearum, and FpHam-2 interacts with another 2 hyphal fusion protein homologues FpHam-3 and FpHam-4.  Each of these 3 genes deletion mutant revealed in similar defective phenotypes compared with the WT and complemented strains, including reduction in growth rate, defects in hyphal fusion and conidiation, more sensitive for cell membrane, cell wall and oxidative stress responses, and decreased in virulence.  The yeast two-hybrid assay was used to identify that FpHam-2 interacts with 3 autophagy-related proteins, including FpAtg3, FpAtg28 and FpAtg33.  Furthermore, FpHam-2-deletion mutant showed decreased accumulation of autophagic bodies in hypha.  In conclusion, FpHam-2, FpHam-3 and FpHam-4 have an essential role for hyphal fusion and regulating the growth, conidiation and virulence in Fpseudograminearum.


Reference | Related Articles | Metrics