Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling
Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia
2024, 23 (9): 2989-3011.   DOI: 10.1016/j.jia.2024.01.012
Abstract171)      PDF in ScienceDirect      
Drought stress is a devastating natural disaster driven by the continuing intensification of global warming, which seriously threatens the productivity and quality of several horticultural crops, including pear.  Gibberellins (GAs) play crucial roles in plant growth, development, and responses to drought stress.  Previous studies have shown significant reductions of GA levels in plants under drought stress; however, our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.  Here, we show that drought stress can impair the accumulation of bioactive GAs (BGAs), and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.  This gene was significantly induced by drought stress and abscisic acid (ABA) treatment, but was suppressed by GA3 treatment.  PbrGA2ox1-overexpressing transgenic tobacco plants (Nicotiana benthamiana) exhibited enhanced tolerance to dehydration and drought stresses, whereas knock-down of PbrGA2ox1 in pear (Pyrus betulaefolia) by virus-induced gene silencing led to elevated drought sensitivity.  Transgenic plants were hypersensitive to ABA, and had a lower BGAs content, enhanced reactive oxygen species (ROS) scavenging ability, and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.  However, the opposite effects were observed with PbrGA2ox1 silencing in pear.  Moreover, exogenous GA3 treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling, resulting in the compromised drought tolerance of pear.  In summary, our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress, providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants.


Reference | Related Articles | Metrics
Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat
Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng
DOI: 10.1016/j.jia.2024.07.047 Online: 02 August 2024
Abstract48)      PDF in ScienceDirect      

Structural variation is an important source of genetic variation in wheat and have been important in the evolution of the wheat’s genome. Few studies have examined the relationship between structural variations and agronomy and drought tolerance. The present study identified structural chromosome variations (SCVs) in a doubled haploid (DH) population and backcross introgression lines (BC5F3) derived from Jinmai 47 and Jinmai 84 using fluorescence in situ hybridization.  There are one simple translocation, 10 present/absent variations (PAVs), and one copy number variation (CNV) between Jinmai 47 and Jinmai 84, which distributed in 10 chromosomes.  Eight SCVs were associated with 15 agronomic traits. A PAV recombination occurred on chromosome 2A, which was associated with grain number per spike (GNS). The 1BL/1RS translocation and PAV.2D were associated with significant reductions in plant height, deriving from the effects on LI2-LI4 and UI, LI2-LI4, respectively.  PAV.2D was also contributed to an increase of 3.13% for GNS, 1BL/1RS significantly increased spikelet number, grain length (GL), and grain thickness (GT). The effect of PAV.4A.1 on GL, PAV.6A on spike length (SL) and thousand-grain weight (TGW), PAV.6B on SL, GT and TGW were identified and verified. PAVs on chromosomes 2A, 6A, 1D, 2D, and a CNV on chromosome 4B were associated with the drought tolerance coefficients.  Additive and interaction effects among SCVs were observed. Many previously cloned key genes and yield-related QTL were found in polymorphic regions of PAV.2B, PAV.2D, and CNV.4B.  Altogether, this study confirmed the genetic effect of SCVs on agronomy and drought tolerance, and identification of these SCVs will facilitate genetic improvement of wheat through marker-assisted selection.

Reference | Related Articles | Metrics