To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C (SOC) and total N (TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-Huai-Hai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer (control), chemical fertilizer only (NPK), chemical fertilizer with straw (NPKS), chemical fertilizer with manure (NPKM), and 1.5 times the rate of NPKM (1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil (0–10 and 10–20 cm) and subsoil (20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil (24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers (22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments (NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions (19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions (–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions (i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72 (P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.
Understanding the characteristics and influences of various factors on phosphorus (P) fractions is of significance for promoting the efficiency of soil P. Based on long-term experiments on black soil, fluvo-aquic soil, and loess soil, which belong to Phaeozems, Cambisols, and Anthrosols in the World Reference Base for Soil Resources (WRB), respectively, five fertilization practices were selected and divided into three groups: no P fertilizer (CK/NK), balanced fertilizer (NPK/NPKS), and manure plus mineral fertilizer (NPKM). Soil inorganic P (Pi) fractions and soil properties were analyzed to investigate the characteristics of the Pi fractions and the relationships between Pi fractions and various soil properties. The results showed that the proportion of Ca10-P in the sum of total Pi fractions was the highest in the three soils, accounting for 33.5% in black soil, 48.8% in fluvo-aquic soil, and 44.8% in loess soil. Long-term fertilization practices resulted in periodic changes in soil Pi accumulation or depletion. For black soil and fluvo-aquic soil, the Pi accumulation was higher in the late period (10–20 years) of fertilization than in the early period (0–10 years) under NPK/NPKS and NPKM, whereas the opposite result was found in loess soil. The Pi accumulation occurred in all Pi fractions in black soil; mainly in Ca8-P, Fe-P, and Ca10-P in fluvo-aquic soil; and in Ca2-P, Ca8-P, and O-P in loess soil. Under CK/NK, the soil Pi was depleted mainly in the early period in each of the three soils. In addition to the labile Pi (Ca2-P) and moderately labile Pi (Ca8-P, Fe-P, Al-P), the Ca10-P in black soil and fluvo-aquic soil and O-P in loess soil could also be used by crops. Redundancy analysis showed that soil properties explained more than 90% of the variation in the Pi fractions in each soil, and the explanatory percentages of soil organic matter (SOM) were 43.6% in black soil, 74.6% in fluvo-aquic, and 38.2% in loess soil. Consequently, decisions regarding the application of P fertilizer should consider the accumulation rate and the variations in Pi fractions driven by soil properties in non-acidic soils.