Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Functional characterization of sensory neuron membrane protein 1a involved in sex pheromone detection of Apolygus lucorum (Hemiptera: Miridae)
Yan Li, Xingkui An, Shuang Shan, Xiaoqian Pang, Xiaohe Liu, Yang Sun, Adel Khashaveh, Yongjun Zhang
2024, 23 (12): 4120-4135.   DOI: 10.1016/j.jia.2024.03.043
Abstract116)      PDF in ScienceDirect      
The mirid bug Apolygus lucorum (Hemiptera: Miridae) is a polyphagous pest that affects a wide range of host plants.  Its control remains challenging mainly due to its rapid reproduction, necessitating an understanding of sex pheromone communication.  The recognition of sex pheromones is vital for courtship and mating behaviors, and is mediated by various chemosensory-associated proteins.  Among these, sensory neuron membrane protein (SNMP), a CD36-related protein, is suggested to play crucial roles in detecting sex pheromones.  In this study, we employed transcriptomic and genomic data from Alucorum and phylogenetic approaches, and identified four putative SNMP genes (AlucSNMP1a, AlucSNMP1b, AlucSNMP2a, and AlucSNMP2b) with full open reading frames.  Expression analysis revealed the ubiquitous presence of AlucSNMP transcripts in multiple tissues, with only AlucSNMP1a exhibiting male-biased expression in the antennae, suggesting its potential role in male chemosensation.  Functional analysis using the Xenopus oocyte expression system, coupled with two-electrode voltage clamp recording, demonstrated that the co-expression of AlucSNMP1a with specific pheromone receptors (PRs) and the Odorant receptor co-receptor (Orco) significantly enhanced electrophysiological responses to sex pheromones compared to the co-expression of PRs and Orco alone.  Moreover, the results indicated that the presence of AlucSNMP1a not only affected the responsiveness to sex pheromones but also influenced the kinetics (activation and inactivation) of the induced signals.  In contrast, the co-expression of AlucSNMP1b with AlucPR/Orco complexes had no impact on the inward currents induced by two pheromone compounds.  An examination of the selective pressures on SNMP1 genes across 20 species indicated strong purifying selection, implying potential functional conservation in various insects.  These findings highlight the crucial role of AlucSNMP1a in the response to sex pheromones.


Reference | Related Articles | Metrics
Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress
XU Yan-xia, ZHANG Jing, WAN Zi-yun, HUANG Shan-xia, DI Hao-chen, HE Ying, JIN Song-heng
2023, 22 (8): 2397-2411.   DOI: 10.1016/j.jia.2023.07.005
Abstract319)      PDF in ScienceDirect      

Rhododendron is a well-known genus consisting of commercially valuable ornamental woody plant species.  Heat stress is a major environmental factor that affects rhododendron growth.  Melatonin was recently reported to alleviate the effects of abiotic stress on plants.  However, the role of melatonin in rhododendron plants is unknown.  In this study, the effect of melatonin on rhododendron plants exposed to heat stress and the potential underlying mechanism were investigated.  Analyses of morphological characteristics and chlorophyll a fluorescence indicated 200 µmol L–1 was the optimal melatonin concentration for protecting rhododendron plants from heat stress.  To elucidate how melatonin limits the adverse effects of high temperatures, melatonin contents, photosynthetic indices, Rubisco activity, and adenosine triphosphate (ATP) contents were analyzed at 25, 35, and 40°C, respectively.  Compared with the control, exogenous application of melatonin improved the melatonin contents, electron transport rate, photosystem II and I activities, Rubisco activity, and ATP contents under heat stress.  The transcriptome analysis revealed many of the heat-induced differentially expressed genes were associated with the photosynthetic pathway; the expression of most of these genes was down-regulated by heat stress more in the melatonin-free plants than in the melatonin-treated plants.  We identified RhPGR5A, RhATPB, RhLHCB3, and RhRbsA as key genes.  Thus, we speculate that melatonin promotes photosynthetic electron transport, improves Calvin cycle enzyme activities, and increases ATP production.  These changes lead to increased photosynthetic efficiency and CO2 assimilation under heat stress conditions via the regulated expression of specific genes, including RhRbsA.  Therefore, the application of exogenous melatonin may increase the tolerance of rhododendron to heat stress.

Reference | Related Articles | Metrics
Liming reduces soil phosphorus availability but promotes yield and P uptake in a double rice cropping system
LIAO Ping, Mart B. H. ROS, Natasja VAN GESTEL, SUN Yan-ni, ZHANG Jun, HUANG Shan, ZENG Yong-jun, WU Zi-ming, Kees Jan VAN GROENIGEN
2020, 19 (11): 2807-2814.   DOI: 10.1016/S2095-3119(20)63222-1
Abstract88)      PDF in ScienceDirect      
Liming is often applied to alleviate soil acidification and increase crop yield on acidic soils, but its effect on soil phosphorus (P) availability is unclear, particularly in rice paddies.  The objective of this study was to examine the effect of liming on rice production, yield and P uptake in a three-year field experiment in a double rice cropping system in subtropical China.  We also conducted an incubation experiment to investigate the direct effect of liming on soil available P and phosphatase activities on paddy soils in the absence of plants.  In the incubation experiment, liming reduced soil P availability (measured as Olsen-extractable P) by 14–17% and inhibited the activity of soil acid phosphatase.  Nonetheless, lime application increased grain yield, biomass, and P uptake in the field.  Liming increased grain yield and P uptake more strongly for late rice (26 and 21%, respectively) than for early rice (15 and 8%, respectively).  Liming reduced the concentration of soil available P in the field as well, reflecting the increase in rice P uptake and the direct negative effect of liming on soil P availability.  Taken together, these results suggest that by stimulating rice growth, liming can overcome direct negative effects on soil P availability and increase plant P uptake in this acidic paddy soil where P is not the limiting factor.
Reference | Related Articles | Metrics
Effects of land use change on the spatiotemporal variability of soil organic carbon in an urban-rural ecotone of Beijing, China
YE Hui-chun, HUANG Yuan-fang, CHEN Peng-fei, HUANG Wen-jiang, ZHANG Shi-wen, HUANG Shan-yu, HOU Sen
2016, 15 (4): 918-928.   DOI: 10.1016/S2095-3119(15)61066-8
Abstract1927)      PDF in ScienceDirect      
Understanding the effects of land use changes on the spatiotemporal variation of soil organic carbon (SOC) can provide guidance for low carbon and sustainable agriculture. In this paper, based on the large-scale datasets of soil surveys in 1982 and 2009 for Pinggu District — an urban-rural ecotone of Beijing, China, the effects of land use and land use changes on both temporal variation and spatial variation of SOC were analyzed. Results showed that from 1982 to 2009 in Pinggu District, the following land use change mainly occurred: Grain cropland converted to orchard or vegetable land, and grassland converted to forestland. The SOC content decreased in region where the land use type changed to grain cropland (e.g., vegetable land to grain cropland decreased by 0.7 g kg–1; orchard to grain cropland decreased by 0.2 g kg–1). In contrast, the SOC content increased in region where the land use type changed to either orchard (excluding forestland) or forestland (e.g., grain cropland to orchard and forestland increased by 2.7 and 2.4 g kg–1, respectively; grassland to orchard and forestland increased by 4.8 and 4.9 g kg–1, respectively). The organic carbon accumulation capacity per unit mass of the soil increased in the following order: grain cropland soil
Reference | Related Articles | Metrics
Relationships Between C4 Enzyme Activities and Yield in Soybeans (Glycine max (L.) Merr.)
HUANG Shan-shan, LI Chang-suo, YANG Ming-liang, LI Wen-bin , WANG Ji-an
2013, 12 (3): 406-413.   DOI: 10.1016/S2095-3119(13)60240-3
Abstract1336)      PDF in ScienceDirect      
To study the relationships between C4 enzyme activities and yield, C4 enzyme activities (phosphoenolpyruvate carboxylase (PEPCase), NADP-malate dehydrogenase (NADP-MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK)) in different organs of ten soybean cultivars with different yields were measured at different growth stages in China. The result showed that four enzyme activities in C4 pathway were obviously different among cultivars, especially PPDK activity was not detected in the leaves of Dongnong 1567 and Dongnong 1068 and the young leaves of Gongjiao 9107-1 and Dongnong 97-172, but there were weak activities in pod coats. The order of C4 enzyme activities is young leaves < old leaves < pod coats. The correlation coefficients between PEPCase activity and yield and between NADP-MDH activity at blooming stage and yield were 0.6979 and 0.6565, respectively, and both reached the significant level (5%), and PEPCase activity kept significant positive correlation with plant photosynthetic rate. There was a negative correlation between NADP-ME activity and yield, and no correlation was found between PPDK activity and yield.
Reference | Related Articles | Metrics
Identification of QTLsAssociated with Total SoyasaponinContent in Soybean (Glycine max (L.) Merr.)
HUANG Shan-shan, HAN Ying-peng, LI Chang-suo, TIAN Jun, LI Wen-bin, WANG Ji-an
2012, 12 (12): 1976-1984.   DOI: 10.1016/S1671-2927(00)8734
Abstract1200)      PDF in ScienceDirect      
Soyasaponins are valuable compounds in certain drugs, industry, food additives and surfactants. Selecting cultivars with higher-soyasaponin content along with agronomic traits is a main goal for many soybean breeders. The aim of the present study was to identify the quantitative trait loci (QTLs) associated with total soyasaponin content through a F2 population, which was derived from a cross between Ha 91016 (higher soyasaponin content cultivar, 16.8 mg g-1) and N98-9445A (lower soyasaponin content, only 5.7 mg g-1). A genetic linkage map including a total of 162 simple sequence repeat markers was constructed, which covered the total length 2 735.5 cM, and the average distance between markers was 16.96 cM. Two QTLs associated with total soyasaponin content were identified. One, qSAP_1 (located in sat_044-satt102 of linkage group (LG) K), could explain 12.6% of phenotypic variance. The other, qSAP_2, was located between satt368 and sat_413 of LG D1a, which could explain 15.8% of phenotypic variance. It was concluded that the two QTLs would have some potential value for marker-assisted selection for high-soyasaponin content breeding in soybeans.
Reference | Related Articles | Metrics