Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China
LIU Kai-lou, HUANG Jing, LI Da-ming, YU Xi-chu, YE Hui-cai, HU Hui-wen, HU Zhi-hua, HUANG Qing-hai, ZHANG Hui-min
2019, 18 (6): 1348-1359.   DOI: 10.1016/S2095-3119(18)62076-3
Abstract221)      PDF in ScienceDirect      
There is limited information on carbon sequestration efficiency (CSE) of soil aggregates in upland and paddy soils under long-term fertilization regimes.  In a red soil region of southern China, an upland soil experiment started in 1986 and a paddy soil experiment commenced in 1981.  These experiments were conducted using different fertilization treatments.  After 30 years, soil organic carbon (SOC) content and stock of different aggregate components were analyzed.  The results showed that the SOC contents and stocks in upland soil were lower than in paddy soil.  In both upland and paddy soils, the SOC contents and stocks of all aggregate components in NPKM (combined treatment with chemical nitrogen (N), phosphorus (P), potassium (K) fertilizers and manure) were the highest among all treatments.  Compared with CK (no fertilizer), SOC content of all aggregate components in NPKM was increased by 13.21–63.11% and 19.13–73.33% in upland and paddy soils, respectively.  Meanwhile, the change rates in SOC stock of all aggregate components in upland soil were lower than in paddy soil, although the change rate of SOC stock of all aggregate components in NPKM was higher than in other treatments.  Furthermore, a linear equation could fit the relationships between carbon (C) input and change rate of SOC stock (P<0.05).  Results indicated that the sum of CSE from all aggregate components in upland soil (16.02%) was higher than that of paddy soil (15.12%) in the same climatic condition and from the same parent material.  However, the CSEs from all aggregates were higher than that of bulk soil, although the result from bulk soil also showed that the CSE of upland soil was higher than that of paddy soil.
Reference | Related Articles | Metrics
Antidepressant Effects of Ginsenosides from Panax notoginseng
YAO Yang, YANG Xiu-shi, WANG Li-li, WU Li, WANG Li-jun, ZHU Zhi-hua, REN Gui-xing
2012, 12 (3): 483-488.   DOI: 10.1016/S1671-2927(00)8567
Abstract1454)      PDF in ScienceDirect      
Ginsenosides Rg1, Rb1, R1, Rd, and Re are major constituents of Panax notoginseng, a famous traditional Chinese medicinal herb, which has both stimulative and inhibitory effects on the central nervous system (CNS). The monoamine hypothesis proposes that depression is a result of the depletion of 5-hydroxytryptamine (5-HT), norepinephrine (NE) and dopamine (DA) in addition to the activation of monoamine oxidase in the CNS. The purpose of this study was to determine whether P. notoginseng Saponin (PNS) has an antidepressant activity. We investigated the antidepressant-like activities of Rg1, Rb1, R1, Rd, and Re in mice, using two animal models of depression. In addition, we analyzed the neurochemicals by the chronic unpredictable mild stress test. Our results showed that Rb1, Rd, and Re treatment at 10 mg kg-1 significantly reduced the duration of immobility in both the tail suspension and forced swimming tests. Rb1, Rd, and Re increases in 5- HT and NE levels at 10 mg kg-1 in both the frontal cortex and hippocampus. Dopamine levels increased in the hippocampus and the striatum. Moreover, 5-hydroxyindoleacetic acid (5-HIAA) levels were found increased in the hippocampus. These findings suggest that the antidepressant effects of Rb1, Rd, and Re may be related to the increase in 5-HT and NE in the CNS, and through the alterations in the synthesis or metabolism of dopamine.
Reference | Related Articles | Metrics