Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)
ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing
2023, 22 (8): 2323-2334.   DOI: 10.1016/j.jia.2023.02.005
Abstract309)      PDF in ScienceDirect      
Peanut pod shape is a heritable trait which affects the market acceptance of in-shell peanut products.  In order to determine the genetic control of pod shape, six component traits of pod shape (pod length, pod width, pod length/width ratio, pod roundness, beak degree and constriction degree) were measured using an image-based phenotyping method.  A recombinant inbred line (RIL) population consisting of 181 lines was phenotyped across three environments.  Continuous distributions and transgressive segregations were demonstrated in all measured traits and environments.   Significant correlations were found among most component traits with broad-sense heritability ranging from 0.87 to 0.95.  Quantitative trait locus (QTL) analysis yielded 26 additive QTLs explaining 3.79 to 52.37% phenotypic variations.  A novel, stable and major QTL region conditioning multiple shape features was detected on chromosome 2, which spans a 10.81-Mb genomic region with 543 putative genes.  Bioinformatics analysis revealed several candidate genes in this region.  In addition, 73 pairs of epistatic interactions involving 92 loci were identified for six component traits explaining 0.94–6.45% phenotypic variations.  These results provide new genetic loci to facilitate genomics-assisted breeding of peanut pod shape.
Reference | Related Articles | Metrics
Dynamics of microbial diversity during the composting of agricultural straw
CHANG Hui-qing, ZHU Xiao-hui, WU Jie, GUO Da-yong, ZHANG Lian-he, FENG Yao
2021, 20 (5): 1121-1136.   DOI: 10.1016/S2095-3119(20)63341-X
Abstract128)      PDF in ScienceDirect      
The dynamic changes in microbial diversity during the aerobic composting of agricultural crop straw with additives were evaluated using high-throughput sequencing at four phases of composting (mesophilic, thermophilic, cooling and maturation phases).  In addition, the physicochemical parameters of the composting system were determined in this study.  The fermentation time of the thermophilic period was prolonged with the addition of urea or urea combined with a microbial agent.  The ratio of C/N and germination index variation indicated that the additives were favorable for composting, because the additives directly changed the physicochemical properties of the compost and had effects on the diversity and abundance of bacteria and fungi.  The abundance of operational taxonomic units (OTUs), diversity index (Shannon) and richness index (Chao1) of fungi and bacteria were found to significantly increase when urea+microbial agents  were added to straw in the thermophilic phase.  The relative abundance of the predominant bacteria and fungi at the phylum and genus levels differed during different composting phases.  The abundance of the phyla Firmicutes and Proteobacteria declined in the order of treatments SNW>SN>S (S is straw only compost; SN is straw+5 kg t–1 urea compost; and SNW is straw+5 kg t–1 urea+1 kg t–1 microbial agent compost) in the thermophilic phase.  The abundance of the genera Staphylococcus, Bacillus and Thermobifida followed the same order in the mesophilic phase.  Ascomycota accounted for more than 92% of the total fungal sequences.  With the progression of the composting process, the abundance of Ascomycota decreased gradually.  The abundance of Ascomycota followed the order of S>SN>SNW during the thermophilic phase.  The abundance of Aspergillus accounted for 4–59% of the total abundance of fungi and increased during the first two sampling periods.  Aspergillus abundance followed the order of SNW>SN>S.  Additionally, principal component analysis (PCA) revealed that the community compositions in the straw and straw+urea treatments were similar, and that the bacterial communities in treatments S, SN and SNW in the mesophilic phase (at day 1) were different from those observed in three other phases (at days 5, 11, and 19, respectively), while the fungal communities showed only slight variations in their structure in response to changes in the composting process.  Canonical correlation analysis (CCA) and redundancy analysis (RDA) showed that total carbon (TC), NO3-N (NN), electrical conductivity (EC) and pH were highly correlated with community composition.  Therefore, this study highlights that the additives are beneficial to straw composting and result in good quality compost.
 
Reference | Related Articles | Metrics
Identification of QTLs for plant height and branching related traits in cultivated peanut
ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, MIAO Hua-rong, Ye Chu, YANG Wei-qiang, ZHONG Wen, CHEN Jing
DOI: 10.1016/j.jia.2023.12.009 Online: 15 December 2023
Abstract74)      PDF in ScienceDirect      

Plant height (PH), primary lateral branch length (PBL) and branch number (BN) are architectural components impacting peanut pod yield, biomass production and adaptivity to mechanical harvesting.  In this study, a recombinant inbred population consisting of 181 individual lines was used to determine genetic controls of PH, PBL and BN across three environments.  Phenotypic data collected from the population demonstrated continuous distributions and transgressive segregation patterns.  Broad-sense heritability of PH, PBL and BN was found to be 0.87, 0.88 and 0.92, respectively.  Unconditional individual environmental analysis revealed 35 additive QTLs with phenotypic variation explained (PVE) ranging from 4.57 to 21.68%.  A two-round meta-analysis resulted in 24 consensus and 17 unique QTLs.  Five unique QTLs exhibited pleiotropic effects and their genetic bases (pleiotropy or tight linkage) were evaluated.  Joint analysis was performed to estimate the QTL by environment interaction (QEI) effects on PH, PBL and BN, which collectively explained phenotypic variations of 10.80, 11.02, and 7.89%, respectively.  We identified 3 major and stable QTL regions (uq9-3, uq10-2 and uq16-1) on chromosomes 9, 10 and 16, spanning 1.43-1.53 Mb genomic regions.  Candidate genes involved in phytohormones biosynthesis, signaling and cell wall development were proposed to regulate these morphological traits.  These results provide valuable information for further genetic studies and development of molecular markers applicable for peanut architecture improvement.

Reference | Related Articles | Metrics