Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Comparison of nitrogen losses by runoff from two different cultivating patterns in sloping farmland with yellow soil during maize growth in Southwest China 
HE Shu-qin, MA Rui, WANG Na-na, WANG Shuang, LI Ting-xuan, ZHENG Zi-cheng
2022, 21 (1): 222-234.   DOI: 10.1016/S2095-3119(20)63496-7
Abstract136)      PDF in ScienceDirect      
The loss of N in farmland is an important cause of agricultural non-point source pollution, which seriously impacts the aquatic environment.  A two-year (2017–2018) experiment was conducted to investigate the characteristics of runoff and N losses under different tillage practices.  Taking downslope ridge planting and cross ridge planting as the experimental treatments, the characteristics of surface runoff, interflow, and N losses in sloping farmlands with yellow soil were studied throughout the maize growth period.  As the rainfall increased, the surface runoff and interflow also increased.  The surface runoff and N losses in the surface runoff of downslope ridge planting were significantly higher than those of cross ridge planting.  The interflow volumes and N losses in the 0–20 and 20–40 cm soil layers of the cross ridge planting were significantly higher than those of the downslope ridge planting.  The total N (TN) losses from surface runoff accounted for 54.95–81.25% of the N losses from all pathways.  Therefore, we inferred that surface runoff is the main pathway of N losses.  Dissolved total N (DTN) was the main form of N loss under different tillage measures, as it accounted for 55.82–94.41% of the TN losses, and dissolved organic N accounted for 52.81–87.06% of the DTN losses.  Thus, we inferred that dissolved N is the main form of N loss.  Future research must focus on the prevention and control of the N losses during the maize seedling stage to reduce the environmental pollution caused by ammonium N through runoff.
Reference | Related Articles | Metrics
Potato/Maize intercropping reduces infestation of potato tuber moth, Phthorimaea operculella (Zeller) by the enhancement of natural enemies
ZHENG Ya-qiang, ZHANG Li-min, CHEN Bin, YAN Nai-sheng, GUI Fu-rong, ZAN Qing-an, DU Guang-zu, HE Shu-qi, LI Zheng-yue, GAO Yu-lin, XIAO Guan-li
2020, 19 (2): 394-405.   DOI: 10.1016/S2095-3119(19)62699-7
Abstract150)      PDF in ScienceDirect      
The potato tuber moth (PTM), Phthorimaea operculella (Zeller), is one of the most economically significant insect pests for potato in both field and storage worldwide.  To evaluate the infestation, reduction of potato yield and the control efficacy for PTM, field tests were conducted in two seasons by intercropping of potato as the host plant with maize as a non-host plant of PTM.  Three intercropping patterns were tested, which were 2 rows of potatoes with either 2, 3, or 4 rows of maize (abbreviated 2P:2M, 2P:3M, and 2P:4M), and the monocropped potato as the control, 2 rows of potatoes, without maize,  (abbreviated 2P:0M).  Results showed that the population and infestation of PTM in the 2P:3M intercropping pattern was significantly lower than those in 2P:2M, 2P:4M and the monocropping pattern of 2P:0M, due to the enhancement of natural enemies.  Cumulative mines and tunneling in potato leaves in 2P:3M intercropping were significantly lower than those in 2P:2M and 2P:4M patterns.  The population of parasitoids and the parasitism rate of PTM in intercropping pattern of 2P:3M were significantly higher than that in intercropping pattern of 2P:2M, 2P:4M and monocropping pattern of 2P:0M.  We conclude that the potato intercropped with maize reduced the adult and larva populations, and reduced the damage from PTM by enhancing the number of parasitoids and the level of parasitism.  The greatest population density of parasitoids and parasitism rate were in the intercropping pattern of 2 rows of potatoes with 3 rows of maize.  These data indicate that the host/non-host intercropping patterns can be used as a biological control tactic against PTM by enhancing the density of natural enemies in the agro-ecosystems.
 
Reference | Related Articles | Metrics