Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Crosstalk of cold and gibberellin effects on bolting and flowering in flowering Chinese cabbage
SONG Shi-wei, LEI Yu-ling, HUANG Xin-min, SU Wei, CHEN Ri-yuan, HAO Yan-wei
2019, 18 (5): 992-1000.   DOI: 10.1016/S2095-3119(18)62063-5
Abstract191)      PDF in ScienceDirect      
The flower stalk is the product organ of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee), which is cultivated extensively in South China.  Flower stalk formation and development, including bolting and flowering, determine the yield of flowering Chinese cabbage; however, the bolting and flowering mechanisms remain to be explored.  To elucidate these processes, we studied the effects of low-temperature and gibberellin (GA) treatments, and their interaction, on stem elongation, bolting time, flowering time, hormone content, and cell morphology in stem of flowering Chinese cabbage.  The results showed that both cold and GA treatments accelerated bolting time, stem elongation, and flowering time.  Moreover, cold and GA cotreated plants displayed additive positive effects.  In addition, cold treatments increased the GA, indole-3-acetic acid, and cytokinin contents and altered cell size in the shoot apices of flowering Chinese cabbage.  Treatment with uniconazole, a GA synthesis inhibitor, strongly delayed bolting time, stem elongation, and flowering time, whereas GA, but not cold treatment, rescued this inhibition, indicating that low temperature accelerates bolting and flowering not only through inducing GA in the shoot apices, but also other ways.  These results provide a theoretical basis for further dissecting the regulatory mechanism of bolting and flowering in flowering Chinese cabbage.
Reference | Related Articles | Metrics
Supplemental blue light increases growth and quality of greenhouse pak choi depending on cultivar and supplemental light intensity
ZHENG Yin-jian, ZHANG Yi-ting, LIU Hou-cheng, LI Ya-min, LIU Ying-liang, HAO Yan-wei, LEI Bing-fu
2018, 17 (10): 2245-2256.   DOI: 10.1016/S2095-3119(18)62064-7
Abstract364)      PDF in ScienceDirect      
To evaluate the supplementary blue light intensity on growth and health-promoting compounds in pak choi (Brassica campestris ssp. chinensis var. communis), four blue light intensity treatments (T0, T50, T100 and T150 indicate 0, 50, 100, and 150 μmol m–2 s–1, respectively) were applied 10 days before harvest under greenhouse conditions.  Both of cultivars (green- and red-leaf pak choi) under T50 had the highest yield, content of chlorophyll and sugars.  With light intensity increasing, antioxidant compounds (vitamin C and carotenoids) significantly increased, while nitrate content showed an opposite trend.  The health-promoting compounds (phenolics, flavonoids, anthocyanins, and glucosinolates) were significantly higher under supplementary light treatment than T0, so as the antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power).  The species-specific differences in photosynthetic pigment and health-promoting compounds was found in green- and red-leaf pak choi.  T50 treatment could be used for yield improvement, whereas T100 treatment could be applied for quality improvement.  Results showed that blue light intensity can regulate the accumulation of biomass, morphology and health-promoting compounds in pak choi under greenhouse conditions.
 
Reference | Related Articles | Metrics