Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
TaSAUR78 enhances multiple plant abiotic stress responses by regulating the interacting gene TaVDAC1
GUO Yuan, XU Chang-bing, SUN Xian-jun, HU Zheng, FAN Shou-jin, JIANG Qi-yan, ZHANG Hui
2019, 18 (12): 2682-2690.   DOI: 10.1016/S2095-3119(19)62651-1
Abstract124)      PDF in ScienceDirect      
SMALL AUXIN-UP RNAs (SAURs) regulated by abiotic stress play multiple functions in plants.  However, the functions of SAURs in abiotic stress are largely unknown.  In this study, we cloned a novel SAUR gene, TaSAUR78, from wheat, and we found that TaSAUR78 interacted with TaVDAC1 (voltage-dependent anion channel).  Salt stress decreased expression of TaSAUR78 and increased expression of TaVDAC1.  Overexpression of TaSAUR78 enhanced tolerance to salt, drought, and freezing stresses in transgenic Arabidopsis and reduced the accumulation of reactive oxygen species (ROS) under salt stress.  Overexpression of TaVDAC1 enhanced tolerance to salt stress, while decreased tolerance to drought and low temperature stresses in transgenic Arabidopsis.  TaVDAC1 overexpression increased the accumulation of ROS in plants.  These results suggested that TaSAUR78 improved plant tolerance to abiotic stresses by regulating TaVDAC1.  This study generated valuable information on the functions of TaSAUR78 and TaVDAC1 in multiple abiotic stresses, which may facilitate the deployment of these genes to enhance crop tolerance to abiotic stresses in the future.
Reference | Related Articles | Metrics
GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean
LI Ming, HU Zheng, JIANG Qi-yan, SUN Xian-jun, GUO Yuan, QI Jun-cang, ZHANG Hui
2018, 17 (03): 530-538.   DOI: 10.1016/S2095-3119(17)61721-0
Abstract1099)      PDF in ScienceDirect      
The NAC (NAM, ATAF1/2 and CUC2) transcription factor family plays a key role in plant development and responses to abiotic stress.  GmNAC15 (Glyma15g40510.1), a member of the NAC transcription factor family in soybean, was functionally characterized, especially with regard to its role in salt tolerance.  In the present study, qRT-PCR (quantitative reverse transcription PCR) analysis indicated that GmNAC15 was induced by salt, drought, low temperature stress, and ABA treatment in roots and leaves.  GmNAC15 overexpression in soybean (Glycine max) hairy roots enhanced salt tolerance.  Transgenic hairy roots improved the survival of wild leaves; however, overexpression of GmNAC15 in hairy root couldn’t influnce the expression level of GmNAC15 in leaf.  GmNAC15 regulates the expression levels of genes responsive to salt stress.  Altogether, these results provide experimental evidence of the positive effect of GmNAC15 on salt tolerance in soybean and the potential application of genetic manipulation to enhance the salt tolerance of important crops. 
Reference | Related Articles | Metrics