Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines
GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan
2022, 21 (9): 2508-2520.   DOI: 10.1016/j.jia.2022.07.004
Abstract307)      PDF in ScienceDirect      

Phenotypic screening of soybean germplasm suitable for high planting density is currently the most viable strategy to increase yield.  Previous studies have shown that soybean varieties with dwarf features and a short petiole often exhibit a compact plant architecture which could improve yield through increased planting density, although previously reported short petiole accessions were ultimately not usable for breeding in practice.  Here, we established a method to assess petiole length and identified an elite mutant line, M657, that exhibits high photosynthetic efficiency.  The agronomic traits of M657 were evaluated under field conditions, and appeared to be stable for short petiole across seven locations in northern, Huang–Huai, and southern China from 2017 to 2018.  Compared with the Jihuang 13 wild type, the mutant M657 was shorter in both petiole length and plant height, exhibited lower total area of leaf, seed weight per plant and 100-seed weight, but had an increased number of effective branches and the growth period was prolonged by 2–7 days.  Using M657 as a parental line for crosses with four other elite lines, we obtained four lines with desirable plant architecture and yield traits, thus demonstrating the feasibility of adopting M657 in breeding programs for soybean cultivars of high density and high yield.

Reference | Related Articles | Metrics
Development and identification of glyphosate-tolerant transgenic soybean via direct selection with glyphosate
GUO Bing-fu, HONG Hui-long, HAN Jia-nan, ZHANG Li-juan, LIU Zhang-xiong, GUO Yong, QIU Li-juan
2020, 19 (5): 1186-1196.   DOI: 10.1016/S2095-3119(19)62747-4
Abstract178)      PDF in ScienceDirect      
Glyphosate-tolerant soybean is the most widely planted genetically modified crop worldwide.   However, soybean remains recalcitrant to routine transformation because of the low infection efficiency of Agrobacterium to soybean and lack of useful selectable markers.  In this study, several Agrobacterium strains and cell densities were compared by transient expression of the GUS gene.  The results showed that Agrobacterium strain Ag10 at cell densities of OD600 of 0.6–0.9 yielded the highest infection efficiency in Agrobacterium-mediated soybean cotyledonary node transformation system.  Meanwhile, a simple and rapid method was developed for identification of glyphosate tolerance in putative T0 transgenic plants, consisting of spotting plantlets with 1 µL Roundup®.  The whole cycle of genetic transformation could be shortened to about 3 mon by highly efficient selection with glyphosate during the transformation process and application of the spot assay in putative T0 transgenic plantlets.  The transformation frequency ranged from 2.9 to 5.6%.  This study provides an improved protocol for development and identification of glyphosate-tolerant transgenic soybeans.
Reference | Related Articles | Metrics
Co-treatment with surfactant and sonication significantly improves Agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean
GUO Bing-fu, GUO Yong, WANG Jun, ZHANG Li-juan, JIN Long-guo, HONG Hui-long, CHANG , Ru-zheng , QIU Li-juan
2015, 14 (7): 1242-1250.   DOI: 10.1016/S2095-3119(14)60907-2
Abstract1969)      PDF in ScienceDirect      
Soybean is a widely planted genetically modified crop around the world. However, it is still one of the most recalcitrant crops for genetic transformation due to the difficulty of regeneration via organogenesis and some factors that affect the transformation efficiency. The percentages of resistant bud formation and transient expression efficiency are important indexes reflecting the regeneration and transformation efficiency of soybean. In this study, the percentages of resistant bud formation and transient expression of β-glucuronidase (GUS) were compared after treatment with sonication or surfactant and co-treatment with both. The results showed that treatment with either sonication or surfactant increased the percentage of resistant bud formation and transient expression efficiency. The highest percentages were acquired and significantly improved when cotyledon node explants were co-treated with sonication for 2 s and surfactant at 0.02% (v:v) using two different soybean genotypes, Jack and Zhonghuang 10. The improved transformation efficiency of this combination was also evaluated by development of herbicide-tolerant soybeans with transformation efficiency at 2.5–5.7% for different genotypes, which was significantly higher than traditional cotyledonary node method in this study. These results suggested that co-treatment with surfactant and sonication significantly improved the percentages of resistance bud formation, transient expression efficiency and stable transformation efficiency in soybean.
Reference | Related Articles | Metrics