Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice
CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui
2023, 22 (3): 669-678.   DOI: 10.1016/j.jia.2022.08.005
Abstract378)      PDF in ScienceDirect      

Plant chlorophyll biosynthesis and chloroplast development are two complex processes that are regulated by exogenous and endogenous factors.  In this study, we identified OsDXR, a gene encoding a reductoisomerase that positively regulates chlorophyll biosynthesis and chloroplast development in rice.  OsDXR knock-out lines displayed the albino phenotype and could not complete the whole life cycle process.  OsDXR was highly expressed in rice leaves, and subcellular localization indicated that OsDXR is a chloroplast protein.  Many genes involved in chlorophyll biosynthesis and chloroplast development were differentially expressed in the OsDXR knock-out lines compared to the wild type.  Moreover, we found that the RNA editing efficiencies of ndhA-1019 and rpl2-1 were significantly reduced in the OsDXR knock-out lines.  Furthermore, OsDXR interacted with the RNA editing factor OsMORF1 in a yeast two-hybrid screen and bimolecular fluorescence complementation assay.  Finally, disruption of the plastidial 2-C-methyl-derythritol-4-phosphate pathway resulted in defects in chloroplast development and the RNA editing of chloroplast genes.

Reference | Related Articles | Metrics
Change of soil productivity in three different soils after long-term field fertilization treatments
LIU Kai-lou, HAN Tian-fu, HUANG Jing, ZHANG Shui-qing, GAO Hong-jun, ZHANG Lu, Asad SHAH, HUANG Shao-min, ZHU Ping, GAO Su-duan, MA Chang-bao, XUE Yan-dong, ZHANG Hui-min
2020, 19 (3): 848-858.   DOI: 10.1016/S2095-3119(19)62742-5
Abstract116)      PDF in ScienceDirect      
Soil productivity (SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield. However, there have been difficulties in estimating values of SPs for soils after various long-term field treatments because the treatment without external fertilization is used but is depleted in soil nutrients, leading to erroneous estimation. The objectives of this study were to estimate the change of SP across different cropping seasons using pot experiments, and to evaluate the steady SP value (which is defined by the basal contribution of soil itself to crop yield) after various longterm fertilization treatments in soils at different geographical locations. The pot experiments were conducted in Jinxian of Jiangxi Province with paddy soil, Zhengzhou of Henan Province with fluvo-aquic soil, and Gongzhuling of Jilin Province with black soils, China. Soils were collected after long-term field fertilization treatments of no fertilizer (control; CK-F), chemical fertilizer (NPK-F), and combined chemical fertilizer with manure (NPKM-F). The soils received either no fertilizer (F0) or chemical fertilizer (F1) for 3–6 cropping seasons in pots, which include CK-P (control; no fertilizer from long-term field experiments for pot experiments), NPK-P (chemical fertilizer from long-term field experiments for pot experiments), and NPKM-P (combined chemical and organic fertilizers from long-term field experiments for pot experiments). The yield data were used to calculate SP values. The initial SP values were high, but decreased rapidly until a relatively steady SP was achieved at or after about three cropping seasons for paddy and fluvo-aquic soils. The steady SP values in the third cropping season from CK-P, NPK-P, and NPKM-P treatments were 37.7, 44.1, and 50.0% in the paddy soil, 34.2, 38.1, and 50.0% in the fluvo-aquic soil, with the highest value observed in the NPKM-P treatment for all soils. However, further research is required in the black soils to incorporate more than three cropping seasons. The partial least squares path mode (PLS-PM) showed that total N (nitrogen) and C/N ratio (the ratio of soil organic carbon and total N) had positive effects on the steady SP for all three soils. These findings confirm the significance of the incorporation of manure for attaining high soil productivity. Regulation of the soil C/N ratio was the other main factor for steady SP through fertilization management.
Reference | Related Articles | Metrics
Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil
HUANG Jing, DUAN Ying-hua, XU Ming-gang, ZHAI Li-mei, ZHANG Xu-bo, WANG Bo-ren, ZHANG Yang-zhu, GAO Su-duan, SUN Nan
2017, 16 (09): 2082-2092.   DOI: 10.1016/S2095-3119(16)61498-3
Abstract771)      PDF in ScienceDirect      
Nitrogen (N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better
understanding of the major pathways can assist in developing the best management practices. The aim of this study was
to evaluate the fate of N fertilizers applied to acidic red soil (Ferralic Cambisol) after 19 years of mineral (synthetic) and
manure fertilizer treatments under a cropping system with wheat-maize rotations. Five field treatments were examined:
control (CK), chemical nitrogen and potash fertilizer (NK), chemical nitrogen and phosphorus fertilizer (NP), chemical nitrogen,
phosphorus and potash fertilizer (NPK) and the NPK with manure (NPKM, 70% N from manure). Based on the soil
total N storage change in 0–100 cm depth, ammonia (NH3) volatilization, nitrous oxide (N2O) emission, N plant uptake, and
the potential N leaching loss were estimated using a mass balance approach. In contrast to the NPKM, all mineral fertilizer
treatments (NK, NP and NPK) showed increased nitrate (NO3-N) concentration with increasing soil depth, indicating higher
leaching potential. However, total NH3 volatilization loss was much higher in the NPKM (19.7%) than other mineral fertilizer
treatments (≤4.2%). The N2O emissions were generally low (0.2–0.9%, the highest from the NPKM). Total gaseous loss
accounted for 1.7, 3.3, 5.1, and 21.9% for NK, NP, NPK, and NPKM treatments, respectively. Estimated N leaching loss
from the NPKM was only about 5% of the losses from mineral fertilizer treatments. All data demonstrated that manure
incorporation improved soil productivity, increased yield, and reduced potential leaching, but with significantly higher NH3
volatilization, which could be reduced by improving the application method. This study confirms that manure incorporation is an essential strategy in N fertilization management in upland red soil cropping system.
Related Articles | Metrics